AMQP and Google Cloud Monitoring Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The AMQP Consumer Input Plugin allows you to ingest data from an AMQP 0-9-1 compliant message broker, such as RabbitMQ, enabling seamless data collection for monitoring and analytics purposes.</p>
<p>The Stackdriver plugin allows users to send metrics directly to a specified project in Google Cloud Monitoring, facilitating robust monitoring capabilities across their cloud resources.</p>
Integration details
AMQP
<p>This plugin provides a consumer for use with AMQP 0-9-1, a prominent implementation of which is RabbitMQ. AMQP, or Advanced Message Queuing Protocol, was originally developed to enable reliable, interoperable messaging between diverse systems in a network. The plugin reads metrics from a topic exchange using a configured queue and binding key, delivering a flexible and efficient means of collecting data from AMQP-compliant messaging systems. This enables users to leverage existing RabbitMQ implementations to monitor their applications effectively by capturing detailed metrics for analysis and alerting.</p>
Google Cloud Monitoring
<p>This plugin writes metrics to a project in Google Cloud Monitoring, which used to be known as Stackdriver. Authentication is a prerequisite and can be achieved via service accounts or user credentials. The plugin is designed to group metrics by a <code>namespace</code> variable and metric key, facilitating organized data management. However, users are encouraged to use the <code>official</code> naming format for enhanced query efficiency. The plugin supports additional configurations for managing metric representation and allows tags to be treated as resource labels. Notably, it imposes certain restrictions on the data it can accept, such as not allowing string values or points that are out of chronological order.</p>
Configuration
AMQP
Google Cloud Monitoring
Input and output integration examples
AMQP
<ol> <li> <p><strong>Integrating Application Metrics with AMQP</strong>: Use the AMQP Consumer plugin to gather application metrics that are published to a RabbitMQ exchange. By configuring the plugin to listen to specific queues, teams can gain insights into application performance, track request rates, error counts, and latency metrics, all in real-time. This setup not only aids in anomaly detection but also provides valuable data for capacity planning and system optimization.</p> </li> <li> <p><strong>Event-Driven Monitoring</strong>: Configure the AMQP Consumer to trigger specific monitoring events whenever certain conditions are met within an application. For instance, if a message indicating a high error rate is received, the plugin can feed this data into monitoring tools, generating alerts or scaling events. This integration can improve responsiveness to issues and automate parts of the operations workflow.</p> </li> <li> <p><strong>Cross-Platform Data Aggregation</strong>: Leverage the AMQP Consumer plugin to consolidate metrics from various applications distributed across different platforms. By utilizing RabbitMQ as a centralized message broker, organizations can unify their monitoring data, allowing for comprehensive analysis and dashboarding through Telegraf, thus maintaining visibility across heterogeneous environments.</p> </li> <li> <p><strong>Real-Time Log Processing</strong>: Extend the use of the AMQP Consumer to capture log data sent to a RabbitMQ exchange, processing logs in real time for monitoring and alerting purposes. This application ensures that operational issues are detected and addressed swiftly by analyzing log patterns, trends, and anomalies as they occur.</p> </li> </ol>
Google Cloud Monitoring
<ol> <li> <p><strong>Multi-Project Metric Aggregation</strong>: Use this plugin to send aggregated metrics from various applications across different projects into a single Google Cloud Monitoring project. This use case helps centralize metrics for teams managing multiple applications, providing a unified view for performance monitoring and enhancing decision-making. By configuring different quota projects for billing, organizations can ensure proper cost management while benefiting from a consolidated monitoring strategy.</p> </li> <li> <p><strong>Anomaly Detection Setup</strong>: Integrate the plugin with a machine learning-based analytics tool that identifies anomalies in the collected metrics. Using the historical data provided by the plugin, the tool can learn normal baseline behavior and promptly alert the operations team when unusual patterns arise, enabling proactive troubleshooting and minimizing service disruptions.</p> </li> <li> <p><strong>Dynamic Resource Labeling</strong>: Implement dynamic tagging by utilizing the tags_as_resource_label option to adaptively attach resource labels based on runtime conditions. This setup allows metrics to provide context-sensitive information, such as varying environmental parameters or operational states, enhancing the granularity of monitoring and reporting without changing the fundamental metric structure.</p> </li> <li> <p><strong>Custom Metric Visualization Dashboards</strong>: Leverage the data collected by the Google Cloud Monitoring output plugin to feed a custom metrics visualization dashboard using a third-party framework. By visualizing metrics in real-time, teams can achieve better situational awareness, notably by correlating different metrics, improving operational decision-making, and streamlining performance management workflows.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration