AMQP and OSI PI Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The AMQP Consumer Input Plugin allows you to ingest data from an AMQP 0-9-1 compliant message broker, such as RabbitMQ, enabling seamless data collection for monitoring and analytics purposes.</p>
<p>This setup converts Telegraf into a lightweight PI Web API publisher, letting you push any Telegraf metric into the OSI PI System with a simple HTTP POST.</p>
Integration details
AMQP
<p>This plugin provides a consumer for use with AMQP 0-9-1, a prominent implementation of which is RabbitMQ. AMQP, or Advanced Message Queuing Protocol, was originally developed to enable reliable, interoperable messaging between diverse systems in a network. The plugin reads metrics from a topic exchange using a configured queue and binding key, delivering a flexible and efficient means of collecting data from AMQP-compliant messaging systems. This enables users to leverage existing RabbitMQ implementations to monitor their applications effectively by capturing detailed metrics for analysis and alerting.</p>
OSI PI
<p>OSI PI is an data management and analytics platform used in energy, manufacturing, and critical infrastructure. The PI Web API is its REST interface, exposing endpoints such as <strong>/piwebapi/streams/{WebId}/value</strong> that accept JSON payloads containing a <code>Timestamp</code> and <code>Value</code>. By pairing Telegraf’s flexible HTTP output with this endpoint, any metric Telegraf collects—SNMP counters, Modbus readings, Kubernetes stats—can be written directly into PI without installing proprietary interfaces. The configuration above authenticates with Basic or Kerberos, serializes each batch to JSON, and renders a minimal body template that aligns with PI Web API’s single-value write contract. Because Telegraf already supports batching, TLS, proxies, and custom headers, this approach scales from edge gateways to cloud VMs, allowing organizations to back-fill historical data, stream live telemetry, or mirror non-PI sources (e.g., Prometheus) into the PI data archive. It also sidesteps older SDK dependencies and enables hybrid architectures where PI remains on-prem while Telegraf agents run in containers or IIoT devices.</p>
Configuration
AMQP
OSI PI
Input and output integration examples
AMQP
<ol> <li> <p><strong>Integrating Application Metrics with AMQP</strong>: Use the AMQP Consumer plugin to gather application metrics that are published to a RabbitMQ exchange. By configuring the plugin to listen to specific queues, teams can gain insights into application performance, track request rates, error counts, and latency metrics, all in real-time. This setup not only aids in anomaly detection but also provides valuable data for capacity planning and system optimization.</p> </li> <li> <p><strong>Event-Driven Monitoring</strong>: Configure the AMQP Consumer to trigger specific monitoring events whenever certain conditions are met within an application. For instance, if a message indicating a high error rate is received, the plugin can feed this data into monitoring tools, generating alerts or scaling events. This integration can improve responsiveness to issues and automate parts of the operations workflow.</p> </li> <li> <p><strong>Cross-Platform Data Aggregation</strong>: Leverage the AMQP Consumer plugin to consolidate metrics from various applications distributed across different platforms. By utilizing RabbitMQ as a centralized message broker, organizations can unify their monitoring data, allowing for comprehensive analysis and dashboarding through Telegraf, thus maintaining visibility across heterogeneous environments.</p> </li> <li> <p><strong>Real-Time Log Processing</strong>: Extend the use of the AMQP Consumer to capture log data sent to a RabbitMQ exchange, processing logs in real time for monitoring and alerting purposes. This application ensures that operational issues are detected and addressed swiftly by analyzing log patterns, trends, and anomalies as they occur.</p> </li> </ol>
OSI PI
<ol> <li> <p><strong>Remote Pump Stations Telemetry Bridge</strong>: Install Telegraf on edge gateways at oil-field pump stations, gather flow-meter and vibration readings over Modbus, and POST them to the PI Web API. Operations teams view real-time data in PI Vision without deploying heavyweight PI interfaces, while bandwidth-friendly batching keeps satellite links economical.</p> </li> <li> <p><strong>Green-Energy Micro-Grid Dashboard</strong>: Export inverter, battery, and weather metrics from MQTT into Telegraf, which relays them to PI. PI AF analytics can calculate real-time power balance and feed a campus dashboard; historical deltas inform sustainability reports.</p> </li> <li> <p><strong>Brownfield SCADA Modernization</strong>: Legacy PLCs logged to CSV are ingested by Telegraf’s <code>tail</code> input; each row is parsed and immediately sent to PI via HTTP, creating a live data stream that co-exists with archival files while the SCADA upgrade proceeds incrementally.</p> </li> <li> <p><strong>Synthetic Data Generator for Training</strong>: Telegraf’s <code>exec</code> input can run a script that emits simulated sensor patterns. Posting those metrics to a non-production PI server through the Web API supplies realistic datasets for PI Vision training sessions without risking production tags.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration