Arista LANZ and IoTDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Arista LANZ plugin is designed for reading latency and congestion metrics from Arista LANZ, helping users monitor their network performance effectively.</p>
<p>This plugin saves Telegraf metrics to an Apache IoTDB backend, supporting session connection and data insertion.</p>
Integration details
Arista LANZ
<p>This plugin provides a consumer for use with Arista Networks’ Latency Analyzer (LANZ). Metrics are read from a stream of data via TCP through port 50001 on the switches management IP. The data is in Protobuffers format, allowing for efficient transportation and parsing of data. LANZ is utilized to monitor network latency and congestion in real-time, which is vital for maintaining optimal performance in networking environments. The underlying technology, Arista’s latency analysis, provides insights into various network operations and infrastructure behaviors, making it a crucial tool for network engineering and management.</p>
IoTDB
<p>Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Its light-weight architecture, high performance, and rich feature set create a perfect fit for massive data storage, high-speed data ingestion, and complex analytics in the IoT industrial fields. IoTDB deeply integrates with Apache Hadoop, Spark, and Flink, which further enhances its capabilities in handling large scale data and sophisticated processing tasks.</p>
Configuration
Arista LANZ
IoTDB
Input and output integration examples
Arista LANZ
<ol> <li> <p><strong>Real-Time Latency Monitoring</strong>: This plugin can be used to set up a monitoring dashboard that tracks real-time latency metrics across multiple interfaces. By gathering and visualizing this data, network admins can swiftly identify and rectify latency issues before they impact service quality. The challenge lies in efficiently handling the influx of metrics from various sources without overwhelming the infrastructure or incurring excessive processing delays.</p> </li> <li> <p><strong>Congestion Analysis for Traffic Engineering</strong>: Users can leverage the LANZ plugin to analyze congestion records, enabling the optimization of network traffic flows. By applying historical pattern recognition to the metrics collected, IT teams can make informed decisions on traffic management strategies, thus improving overall network efficiency. This requires implementing robust data storage and analysis capabilities to derive actionable insights from the raw metrics.</p> </li> <li> <p><strong>Integration with Alerting Systems</strong>: Integrate the metrics from this plugin with alerting systems to automatically notify network engineers of any significant changes in latency or congestion. By setting thresholds based on historical data trends, this use case enhances proactive incident management, allowing teams to address potential issues proactively. The technical challenge here is establishing the right balance in threshold settings to minimize false positives while ensuring genuine issues are flagged promptly.</p> </li> <li> <p><strong>Network Optimization Reports</strong>: Utilize the metrics gathered through the LANZ plugin to generate periodic reports that detail network performance, latency trends, and congestion events. These reports can help stakeholders understand network health over time and guide infrastructure investments. The challenge involves structuring and formatting the output data to make it comprehensible and actionable for various audiences.</p> </li> </ol>
IoTDB
<ol> <li> <p><strong>Real-Time IoT Monitoring</strong>: Utilize the IoTDB plugin to gather sensor data from various IoT devices and save it in an Apache IoTDB backend, facilitating real-time monitoring of environmental conditions such as temperature and humidity. This use case enables organizations to analyze trends over time and make informed decisions based on historical data, while also utilizing IoTDB’s efficient storage and querying capabilities.</p> </li> <li> <p><strong>Smart Agriculture Data Collection</strong>: Use the IoTDB plugin to collect metrics from smart agriculture sensors deployed in fields. By transmitting moisture levels, nutrient content, and atmospheric conditions to IoTDB, farmers can access detailed insights into optimal planting and watering schedules, thus improving crop yields and resource management.</p> </li> <li> <p><strong>Energy Consumption Analytics</strong>: Leverage the IoTDB plugin to track energy consumption metrics from smart meters across a utility network. This integration enables analytics to identify peaks in usage and predict future consumption patterns, ultimately supporting energy conservation initiatives and improved utility management.</p> </li> <li> <p><strong>Automated Industrial Equipment Monitoring</strong>: Use this plugin to gather operational metrics from machinery in a manufacturing plant and store them in IoTDB for analysis. This setup can help identify inefficiencies, predictive maintenance needs, and operational anomalies, ensuring optimal performance and minimizing unexpected downtimes.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration