AWS Data Firehose and Microsoft SQL Server Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin listens for metrics sent via HTTP from AWS Data Firehose in supported data formats, providing real-time data ingestion capabilities.</p>
<p>Telegraf’s SQL plugin facilitates the storage of metrics in SQL databases. When configured for Microsoft SQL Server, it supports the specific DSN format and schema requirements, allowing for seamless integration with SQL Server.</p>
Integration details
AWS Data Firehose
<p>The AWS Data Firehose Telegraf plugin is designed to receive metrics from AWS Data Firehose via HTTP. This plugin listens for incoming data in various formats and processes it according to the request-response schema outlined in the official AWS documentation. Unlike standard input plugins that operate on a fixed interval, this service plugin initializes a listener that remains active, waiting for incoming metrics. This allows for real-time data ingestion from AWS Data Firehose, making it suitable for scenarios where immediate data processing is required. Key features include the ability to specify service addresses, paths, and support for TLS connections for secure data transmission. Additionally, the plugin accommodates optional authentication keys and custom tags, enhancing its flexibility in various use cases involving data streaming and processing.</p>
Microsoft SQL Server
<p>Telegraf’s SQL output plugin for Microsoft SQL Server is designed to capture and store metric data by dynamically creating tables and columns that match the structure of incoming data. This integration leverages the go-mssqldb driver, which follows the SQL Server connection protocol through a DSN that includes server, port, and database details. Although the driver is considered experimental due to limited unit tests, it provides robust support for dynamic schema generation and data insertion, enabling detailed time-stamped records of system performance. This flexibility makes it a valuable tool for environments that demand reliable and granular metric logging, despite its experimental status.</p>
Configuration
AWS Data Firehose
Microsoft SQL Server
Input and output integration examples
AWS Data Firehose
<ol> <li> <p><strong>Real-Time Data Analytics</strong>: Using the AWS Data Firehose plugin, organizations can stream data in real-time from various sources, such as application logs or IoT devices, directly into analytics platforms. This allows data teams to analyze incoming data as it is generated, enabling rapid insights and operational adjustments based on fresh metrics.</p> </li> <li> <p><strong>Profile Access Patterns for Optimization</strong>: By collecting data about how clients interact with applications through AWS Data Firehose, businesses can gain valuable insights into user behavior. This can drive content personalization strategies or optimize server architecture for better performance based on traffic patterns.</p> </li> <li> <p><strong>Automated Alerting Mechanism</strong>: Integrating AWS Data Firehose with alerting systems via this plugin allows teams to set up automated alerts based on specific metrics collected. For example, if a particular threshold is reached in the input data, alerts can trigger operations teams to investigate potential issues before they escalate.</p> </li> </ol>
Microsoft SQL Server
<ol> <li> <p><strong>Enterprise Application Monitoring</strong>: Leverage the plugin to capture detailed performance metrics from enterprise applications running on SQL Server. This setup allows IT teams to analyze system performance, track transaction times, and identify bottlenecks across complex, multi-tier environments.</p> </li> <li> <p><strong>Dynamic Infrastructure Auditing</strong>: Deploy the plugin to create a dynamic audit log of infrastructure changes and performance metrics in SQL Server. This use case is ideal for organizations that require real-time monitoring and historical analysis of system performance for compliance and optimization.</p> </li> <li> <p><strong>Automated Performance Benchmarking</strong>: Use the plugin to continuously record and analyze performance metrics of SQL Server databases. This enables automated benchmarking, where historical data is compared against current performance, helping to quickly identify anomalies or degradation in service.</p> </li> <li> <p><strong>Integrated DevOps Dashboards</strong>: Integrate the plugin with DevOps monitoring tools to feed real-time metrics from SQL Server into centralized dashboards. This provides a holistic view of application health, allowing teams to correlate SQL Server performance with application-level events for faster troubleshooting and proactive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration