Azure Monitor and DuckDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>Gather metrics from Azure resources using the Azure Monitor API.</p>
<p>This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.</p>
Integration details
Azure Monitor
<p>The Azure Monitor Telegraf plugin is specifically designed for gathering metrics from various Azure resources using the Azure Monitor API. Users must provide specific credentials such as <code>client_id</code>, <code>client_secret</code>, <code>tenant_id</code>, and <code>subscription_id</code> to authenticate and gain access to their Azure resources. Additionally, the plugin supports functionality to collect metrics from both individual resources and resource groups or subscriptions, allowing for flexible and scalable metric collection tailored to user needs. This plugin is ideal for organizations leveraging Azure cloud infrastructure, providing crucial insights into resource performance and utilization over time, facilitating proactive management and optimization of cloud resources.</p>
DuckDB
<p>Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.</p>
Configuration
Azure Monitor
DuckDB
Input and output integration examples
Azure Monitor
<ol> <li> <p><strong>Dynamic Resource Monitoring</strong>: Use the Azure Monitor plugin to dynamically gather metrics from Azure resources based on specific criteria like tags or resource types. Organizations can automate the process of loading and unloading resource metrics, enabling better performance tracking and optimization based on resource utilization patterns.</p> </li> <li> <p><strong>Multi-Cloud Monitoring Integration</strong>: Integrate metrics collected from Azure Monitor with other cloud providers using a centralized monitoring solution. This allows organizations to view and analyze performance data across multiple cloud deployments, providing a holistic overview of resource performance and costs, and streamlining operations.</p> </li> <li> <p><strong>Anomaly Detection and Alerting</strong>: Leverage the metrics gathered via the Azure Monitor plugin in conjunction with machine learning algorithms to detect anomalies in resource utilization. By establishing baseline performance metrics and automatically alerting on deviations, organizations can mitigate risks and address performance issues before they escalate.</p> </li> <li> <p><strong>Historical Performance Analysis</strong>: Use the collected Azure metrics to conduct historical analysis by feeding the data into a data warehousing solution. This enables organizations to track trends over time, allowing for detailed reporting and decision-making based on historical performance data.</p> </li> </ol>
DuckDB
<ol> <li> <p><strong>Embedded Metric Warehousing for Notebooks</strong>: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.</p> </li> <li> <p><strong>Batch Time-Series Processing on the Edge</strong>: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.</p> </li> <li> <p><strong>Exploratory Querying of Historical Metrics</strong>: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.</p> </li> <li> <p><strong>Self-Contained Metric Snapshots</strong>: Use DuckDB as a portable metrics archive by shipping <code>.duckdb</code> files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration