Azure Storage Queue and Elasticsearch Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin gathers sizes of Azure Storage Queues, providing users with metrics that enhance observability and management of their storage resources.</p>
<p>The Telegraf Elasticsearch Plugin seamlessly sends metrics to an Elasticsearch server. The plugin handles template creation and dynamic index management, and supports various Elasticsearch-specific features to ensure data is formatted correctly for storage and retrieval.</p>
Integration details
Azure Storage Queue
<p>The Azure Storage Queue plugin allows users to gather various metrics concerning the size and message age of Azure Storage Queues. This plugin connects to Azure Storage, requiring specific credentials and offers configurable options to enhance performance. By collecting metrics, users gain valuable insights into the performance of their storage queues, enabling them to monitor usage patterns, peak loads, and optimize storage management effectively. The integration with Azure’s storage infrastructure provides a straightforward way to monitor queue metrics, ensuring that users can react to changes promptly, maintaining the efficiency and reliability of their applications.</p>
Elasticsearch
<p>This plugin writes metrics to Elasticsearch, a distributed, RESTful search and analytics engine capable of storing large amounts of data in near real-time. It is designed to handle Elasticsearch versions 5.x through 7.x and utilizes its dynamic template features to manage data type mapping properly. The plugin supports advanced features such as template management, dynamic index naming, and integration with OpenSearch. It also allows configurations for authentication and health monitoring of the Elasticsearch nodes.</p>
Configuration
Azure Storage Queue
Elasticsearch
Input and output integration examples
Azure Storage Queue
<ol> <li> <p><strong>Monitoring Queue Performance in Real-time</strong>: Use the Azure Storage Queue plugin to continuously track the size and age of messages in queues, providing operators with real-time insights. This information can help teams understand throughput and delays, enabling them to adjust processing rates or troubleshoot bottlenecks.</p> </li> <li> <p><strong>Dynamic Alerting Based on Queue Metrics</strong>: Integrate metrics from the Azure Storage Queue plugin into an alerting system. By defining thresholds for message age and queue size, organizations can automate notifications, ensuring they promptly address situations where queues become too long or messages are delayed, maintaining a healthy and responsive system environment.</p> </li> <li> <p><strong>Optimizing Cost Management</strong>: Leverage the insights from the Azure Storage Queue metrics to identify periods of inactivity and implement cost-saving measures by adjusting storage scales. By analyzing queue size trends, organizations can make informed decisions about resource allocation, effectively balancing performance needs with cost efficiency.</p> </li> <li> <p><strong>Enhancing Application Fault Tolerance</strong>: Use the age metrics of the oldest message to design smarter retry strategies within applications. In scenarios where message processing fails, understanding how long messages sit in the queue allows developers to fine-tune their error handling logic, enhancing the resilience and reliability of their applications.</p> </li> </ol>
Elasticsearch
<ol> <li> <p><strong>Time-based Indexing</strong>: Use this plugin to store metrics in Elasticsearch to index each metric based on the time collected. For example, CPU metrics can be stored in a daily index named<code>telegraf-2023.01.01</code>, allowing easy time-based queries and retention policies.</p> </li> <li> <p><strong>Dynamic Templates Management</strong>: Utilize the template management feature to automatically create a custom template tailored to your metrics. This allows you to define how different fields are indexed and analyzed without manually configuring Elasticsearch, ensuring an optimal data structure for querying.</p> </li> <li> <p><strong>OpenSearch Compatibility</strong>: If you are using AWS OpenSearch, you can configure this plugin to work seamlessly by activating compatibility mode, ensuring your existing Elasticsearch clients remain functional and compatible with newer cluster setups.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration