Ceph and Databricks Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Ceph plugin for Telegraf helps in gathering performance metrics from both MON and OSD nodes in a Ceph storage cluster for effective monitoring and management.</p>
<p>Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.</p>
Integration details
Ceph
<p>The Ceph Storage Telegraf plugin is designed to collect performance metrics from Monitor (MON) and Object Storage Daemon (OSD) nodes within a Ceph storage cluster. Ceph, a highly scalable storage system, integrates its metrics collection through this plugin, facilitating easy monitoring of its components. With the introduction of this plugin in the 13.x Mimic release, users can effectively gather detailed insights into the performance and health of their Ceph infrastructure. It functions by scanning configured socket directories for specific Ceph service socket files, executing commands via the Ceph administrative interface, and parsing the returned JSON data for metrics. The metrics are organized based on top-level keys, allowing for efficient monitoring and analysis of cluster performance. This plugin provides valuable capabilities for managing and maintaining the performance of a Ceph cluster by allowing administrators to understand system behavior and identify potential issues proactively.</p>
Databricks
<p>This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a <code>statement</code> field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a <code>PUT ... INTO /Volumes/...</code> command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the <code>warehouse_id</code> at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and <code>COPY INTO</code> are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.</p>
Configuration
Ceph
Databricks
Input and output integration examples
Ceph
<ol> <li> <p><strong>Dynamic Monitoring Dashboard</strong>: Utilize the Ceph plugin to create a real-time monitoring dashboard that visually represents the performance metrics of your Ceph cluster. By integrating these metrics into a centralized dashboard, system administrators can gain immediate insights into the health of the storage infrastructure, which aids in quickly identifying and addressing potential issues before they escalate.</p> </li> <li> <p><strong>Automated Alerting System</strong>: Implement the Ceph plugin in conjunction with an alerting solution to automatically notify administrators of performance degradation or operational issues within the Ceph cluster. By defining thresholds for key metrics, organizations can ensure prompt response actions, thereby improving overall system reliability and performance.</p> </li> <li> <p><strong>Performance Benchmarking</strong>: Use the metrics collected by this plugin to conduct performance benchmarking tests across different configurations or hardware setups of your Ceph storage cluster. This process can assist organizations in identifying optimal configurations that enhance performance and resource utilization, promoting a more efficient storage environment.</p> </li> <li> <p><strong>Capacity Planning and Forecasting</strong>: Integrate the metrics gathered from the Ceph storage plugin into broader data analytics and reporting tools to facilitate capacity planning. By analyzing historical metrics, organizations can forecast future utilization trends, enabling informed decisions about scaling storage resources effectively.</p> </li> </ol>
Databricks
<ol> <li><strong>Edge-to-Lakehouse Telemetry Pipe</strong>: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.</li> <li><strong>Blue-Green CI/CD Rollout Metrics</strong>: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by <code>deployment_id</code>, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions.</li> <li><strong>SaaS Usage Metering</strong>: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.</li> <li><strong>Security Forensics Lake</strong>: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using <code>PUT</code> commands, then run <code>COPY INTO</code> for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.</li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration