Ceph and PostgreSQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Ceph plugin for Telegraf helps in gathering performance metrics from both MON and OSD nodes in a Ceph storage cluster for effective monitoring and management.</p>
<p>The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.</p>
Integration details
Ceph
<p>The Ceph Storage Telegraf plugin is designed to collect performance metrics from Monitor (MON) and Object Storage Daemon (OSD) nodes within a Ceph storage cluster. Ceph, a highly scalable storage system, integrates its metrics collection through this plugin, facilitating easy monitoring of its components. With the introduction of this plugin in the 13.x Mimic release, users can effectively gather detailed insights into the performance and health of their Ceph infrastructure. It functions by scanning configured socket directories for specific Ceph service socket files, executing commands via the Ceph administrative interface, and parsing the returned JSON data for metrics. The metrics are organized based on top-level keys, allowing for efficient monitoring and analysis of cluster performance. This plugin provides valuable capabilities for managing and maintaining the performance of a Ceph cluster by allowing administrators to understand system behavior and identify potential issues proactively.</p>
PostgreSQL
<p>The PostgreSQL plugin enables users to write metrics to a PostgreSQL database or a compatible database, providing robust support for schema management by automatically updating missing columns. The plugin is designed to facilitate integration with monitoring solutions, allowing users to efficiently store and manage time series data. It offers configurable options for connection settings, concurrency, and error handling, and supports advanced features such as JSONB storage for tags and fields, foreign key tagging, templated schema modifications, and support for unsigned integer data types through the pguint extension.</p>
Configuration
Ceph
PostgreSQL
Input and output integration examples
Ceph
<ol> <li> <p><strong>Dynamic Monitoring Dashboard</strong>: Utilize the Ceph plugin to create a real-time monitoring dashboard that visually represents the performance metrics of your Ceph cluster. By integrating these metrics into a centralized dashboard, system administrators can gain immediate insights into the health of the storage infrastructure, which aids in quickly identifying and addressing potential issues before they escalate.</p> </li> <li> <p><strong>Automated Alerting System</strong>: Implement the Ceph plugin in conjunction with an alerting solution to automatically notify administrators of performance degradation or operational issues within the Ceph cluster. By defining thresholds for key metrics, organizations can ensure prompt response actions, thereby improving overall system reliability and performance.</p> </li> <li> <p><strong>Performance Benchmarking</strong>: Use the metrics collected by this plugin to conduct performance benchmarking tests across different configurations or hardware setups of your Ceph storage cluster. This process can assist organizations in identifying optimal configurations that enhance performance and resource utilization, promoting a more efficient storage environment.</p> </li> <li> <p><strong>Capacity Planning and Forecasting</strong>: Integrate the metrics gathered from the Ceph storage plugin into broader data analytics and reporting tools to facilitate capacity planning. By analyzing historical metrics, organizations can forecast future utilization trends, enabling informed decisions about scaling storage resources effectively.</p> </li> </ol>
PostgreSQL
<ol> <li> <p><strong>Real-Time Analytics with Complex Queries</strong>: Leverage the PostgreSQL plugin to store metrics from various sources in a PostgreSQL database, enabling real-time analytics using complex queries. This setup can help data scientists and analysts uncover patterns and trends, as they manipulate relational data across multiple tables while utilizing PostgreSQL’s robust query optimization features. Specifically, users can create sophisticated reports with JOIN operations across different metric tables, revealing insights that would typically remain hidden in embedded systems.</p> </li> <li> <p><strong>Integrating with TimescaleDB for Time-Series Data</strong>: Utilize the PostgreSQL plugin within a TimescaleDB instance to efficiently handle and analyze time-series data. By implementing hypertables, users can achieve greater performance and partitioning of topics over the time dimension. This integration allows users to run analytical queries over large amounts of time-series data while retaining the full power of PostgreSQL’s SQL queries, ensuring reliability and efficiency in metrics analysis.</p> </li> <li> <p><strong>Data Versioning and Historical Analysis</strong>: Implement a strategy using the PostgreSQL plugin to maintain different versions of metrics over time. Users can set up an immutable data table structure where older versions of tables are retained, enabling easy historical analysis. This approach not only provides insights into data evolution but also aids compliance with data retention policies, ensuring that the historical integrity of the datasets remains intact.</p> </li> <li> <p><strong>Dynamic Schema Management for Evolving Metrics</strong>: Use the plugin’s templating capabilities to create a dynamically changing schema that responds to metric variations. This use case allows organizations to adapt their data structure as metrics evolve, adding necessary fields and ensuring adherence to data integrity policies. By leveraging templated SQL commands, users can extend their database without manual intervention, facilitating agile data management practices.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration