Ceph and SQLite Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Ceph plugin for Telegraf helps in gathering performance metrics from both MON and OSD nodes in a Ceph storage cluster for effective monitoring and management.</p>
<p>Telegraf’s SQL output plugin stores metrics in an SQL database by creating tables dynamically for each metric type. When configured for SQLite, it utilizes a file-based DSN and a minimal SQL schema tailored for lightweight, embedded database usage.</p>
Integration details
Ceph
<p>The Ceph Storage Telegraf plugin is designed to collect performance metrics from Monitor (MON) and Object Storage Daemon (OSD) nodes within a Ceph storage cluster. Ceph, a highly scalable storage system, integrates its metrics collection through this plugin, facilitating easy monitoring of its components. With the introduction of this plugin in the 13.x Mimic release, users can effectively gather detailed insights into the performance and health of their Ceph infrastructure. It functions by scanning configured socket directories for specific Ceph service socket files, executing commands via the Ceph administrative interface, and parsing the returned JSON data for metrics. The metrics are organized based on top-level keys, allowing for efficient monitoring and analysis of cluster performance. This plugin provides valuable capabilities for managing and maintaining the performance of a Ceph cluster by allowing administrators to understand system behavior and identify potential issues proactively.</p>
SQLite
<p>The SQL output plugin writes Telegraf metrics to an SQL database using a dynamic schema where each metric type corresponds to a table. For SQLite, the plugin uses the modernc.org/sqlite driver and requires a DSN in the format of a file URI (e.g., ‘file:/path/to/telegraf.db?cache=shared’). This configuration leverages standard ANSI SQL for table creation and data insertion, ensuring compatibility with SQLite’s capabilities.</p>
Configuration
Ceph
SQLite
Input and output integration examples
Ceph
<ol> <li> <p><strong>Dynamic Monitoring Dashboard</strong>: Utilize the Ceph plugin to create a real-time monitoring dashboard that visually represents the performance metrics of your Ceph cluster. By integrating these metrics into a centralized dashboard, system administrators can gain immediate insights into the health of the storage infrastructure, which aids in quickly identifying and addressing potential issues before they escalate.</p> </li> <li> <p><strong>Automated Alerting System</strong>: Implement the Ceph plugin in conjunction with an alerting solution to automatically notify administrators of performance degradation or operational issues within the Ceph cluster. By defining thresholds for key metrics, organizations can ensure prompt response actions, thereby improving overall system reliability and performance.</p> </li> <li> <p><strong>Performance Benchmarking</strong>: Use the metrics collected by this plugin to conduct performance benchmarking tests across different configurations or hardware setups of your Ceph storage cluster. This process can assist organizations in identifying optimal configurations that enhance performance and resource utilization, promoting a more efficient storage environment.</p> </li> <li> <p><strong>Capacity Planning and Forecasting</strong>: Integrate the metrics gathered from the Ceph storage plugin into broader data analytics and reporting tools to facilitate capacity planning. By analyzing historical metrics, organizations can forecast future utilization trends, enabling informed decisions about scaling storage resources effectively.</p> </li> </ol>
SQLite
<ol> <li><strong>Local Monitoring Storage</strong>: Configure the plugin to write metrics to a local SQLite database file. This is ideal for lightweight deployments where setting up a full-scale database server is not required.</li> <li><strong>Embedded Applications</strong>: Use SQLite as the backend for applications embedded in edge devices, benefiting from its file-based architecture and minimal resource requirements.</li> <li><strong>Quick Setup for Testing</strong>: Leverage SQLite’s ease of use to quickly set up a testing environment for Telegraf metrics collection without the need for external database services.</li> <li><strong>Custom Schema Management</strong>: Adjust the table creation templates to predefine your schema if you require specific column types or indexes, ensuring compatibility with your application’s needs.</li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration