Cisco Model-Driven Telemetry and TimescaleDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Cisco Model-Driven Telemetry (MDT) plugin facilitates the collection of telemetry data from Cisco networking platforms, utilizing gRPC and TCP transport mechanisms. This plugin is essential for users looking to implement advanced telemetry solutions for better insights and operational efficiency.</p>
<p>This output plugin delivers a reliable and efficient mechanism for routing Telegraf collected metrics directly into TimescaleDB. By leveraging PostgreSQL’s robust ecosystem combined with TimescaleDB’s time series optimizations, it supports high-performance data ingestion and advanced querying capabilities.</p>
Integration details
Cisco Model-Driven Telemetry
<p>Cisco model-driven telemetry (MDT) is designed to provide a robust means of consuming telemetry data from various Cisco platforms, including IOS XR, IOS XE, and NX-OS. This plugin focuses on the efficient transport of telemetry data using either TCP or gRPC protocols, offering flexibility based on the network environment and requirements. The gRPC transport is particularly advantageous as it supports TLS for enhanced security through encryption and authentication. The plugin is compatible with a range of software versions on Cisco devices, enabling organizations to leverage telemetry capabilities across their network operations. It is especially useful for network monitoring and analytics, as it enables real-time data collection directly from Cisco devices, enhancing visibility into network performance, resource utilization, and operational metrics.</p>
TimescaleDB
<p>TimescaleDB is an open source time series database built as an extension to PostgreSQL, designed to handle large scale, time-oriented data efficiently. Launched in 2017, TimescaleDB emerged in response to the growing need for a robust, scalable solution that could manage vast volumes of data with high insert rates and complex queries. By leveraging PostgreSQL’s familiar SQL interface and enhancing it with specialized time series capabilities, TimescaleDB quickly gained popularity among developers looking to integrate time series functionality into existing relational databases. Its hybrid approach allows users to benefit from PostgreSQL’s flexibility, reliability, and ecosystem while providing optimized performance for time series data.</p> <p>The database is particularly effective in environments that demand fast ingestion of data points combined with sophisticated analytical queries over historical periods. TimescaleDB has a number of innovative features like hypertables which transparently partition data into manageable chunks and built-in continuous aggregation. These allow for significantly improved query speed and resource efficiency.</p>
Configuration
Cisco Model-Driven Telemetry
TimescaleDB
Input and output integration examples
Cisco Model-Driven Telemetry
<ol> <li> <p><strong>Real-Time Network Monitoring</strong>: Utilize the Cisco MDT plugin to collect network performance metrics from Cisco routers and switches. By feeding telemetry data into a visualization tool, network operators can observe traffic trends, bandwidth usage, and error rates in real-time. This proactive monitoring allows teams to swiftly address issues before they affect network performance, resulting in a more reliable service.</p> </li> <li> <p><strong>Automated Anomaly Detection</strong>: Integrate Cisco MDT with machine learning algorithms to create an automated anomaly detection system. By continuously analyzing telemetry data, the system can identify deviations from typical operational patterns, providing alerts for unusual conditions that may signify network problems or security threats, which can aid in maintaining operational integrity.</p> </li> <li> <p><strong>Dynamic Configuration Management</strong>: Leveraging the telemetry data collected from Cisco devices, organizations can implement dynamic configuration management solutions that automatically adjust network settings based on current performance indicators. For instance, if the telemetry indicates high utilization on certain links, the system could dynamically route traffic to underutilized paths, optimizing resource usage.</p> </li> <li> <p><strong>Enhanced Reporting and Analytics</strong>: Use the Cisco MDT plugin to feed detailed telemetry data into analytics platforms, enabling comprehensive reporting on network health and performance. Historical and real-time analysis can guide decision-making and strategic planning, helping organizations to allocate resources more effectively and understand their network’s operational landscape better.</p> </li> </ol>
TimescaleDB
<ol> <li> <p><strong>Real-Time IoT Data Ingestion</strong>: Use the plugin to collect and store sensor data from thousands of IoT devices in real time. This setup facilitates immediate analysis, helping organizations monitor operational efficiency and respond quickly to changing conditions.</p> </li> <li> <p><strong>Cloud Application Performance Monitoring</strong>: Leverage the plugin to feed detailed performance metrics from distributed cloud applications into TimescaleDB. This integration supports real-time dashboards and alerts, enabling teams to swiftly identify and mitigate performance bottlenecks.</p> </li> <li> <p><strong>Historical Data Analysis and Reporting</strong>: Implement a system where long-term metrics are stored in TimescaleDB for comprehensive historical analysis. This approach allows businesses to perform trend analysis, generate detailed reports, and make data-driven decisions based on archived time-series data.</p> </li> <li> <p><strong>Adaptive Alerting and Anomaly Detection</strong>: Integrate the plugin with automated anomaly detection workflows. By continuously streaming metrics to TimescaleDB, machine learning models can analyze data patterns and trigger alerts when anomalies occur, enhancing system reliability and proactive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration