ctrlX Data Layer and Google BigQuery Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The ctrlX plugin is designed to gather data seamlessly from the ctrlX Data Layer middleware, widely used in industrial automation.</p>
<p>The Google BigQuery plugin allows Telegraf to write metrics to Google Cloud BigQuery, enabling robust data analytics capabilities for telemetry data.</p>
Integration details
ctrlX Data Layer
<p>The ctrlX Telegraf plugin provides a means to gather data from the ctrlX Data Layer, a communication middleware designed for professional automation applications. This plugin allows users to connect to ctrlX CORE devices, enabling the collection and monitoring of various metrics related to industrial and building automation, robotics, and IoT. The configuration options allow for detailed specifications of connection settings, subscription properties, and sampling rates, facilitating effective integration with the ctrlX Data Layer to meet customized monitoring needs, while leveraging the unique capabilities of the ctrlX platform.</p>
Google BigQuery
<p>The Google BigQuery plugin for Telegraf enables seamless integration with Google Cloud’s BigQuery service, a popular data warehousing and analytics platform. This plugin facilitates the transfer of metrics collected by Telegraf into BigQuery datasets, making it easier for users to perform analyses and generate insights from their telemetry data. It requires authentication through a service account or user credentials and is designed to handle various data types, ensuring that users can maintain the integrity and accuracy of their metrics as they are stored in BigQuery tables. The configuration options allow for customization around dataset specifications and handling metrics, including the management of hyphens in metric names, which are not supported by BigQuery for streaming inserts. This plugin is particularly useful for organizations leveraging the scalability and powerful query capabilities of BigQuery to analyze large volumes of monitoring data.</p>
Configuration
ctrlX Data Layer
Google BigQuery
Input and output integration examples
ctrlX Data Layer
<ol> <li> <p><strong>Industrial Automation Monitoring</strong>: Utilize this plugin to continuously monitor key performance indicators from a manufacturing system controlled by ctrlX CORE devices. By subscribing to specific data nodes that provide real-time metrics such as resource availability or machine uptime, manufacturers can dynamically adjust their operations for increased efficiency and minimal downtime.</p> </li> <li> <p><strong>Energy Consumption Analysis</strong>: Collect energy consumption data from IoT-enabled ctrlX CORE platforms in a smart building setup. By analyzing trends and patterns in energy use, facility managers can optimize operating strategies, reduce energy costs, and support sustainability initiatives, making informed decisions about resource allocation and predictive maintenance.</p> </li> <li> <p><strong>Predictive Maintenance for Robotics</strong>: Gather telemetry data from robotics applications deployed in warehousing environments. By monitoring vibration, temperature, and operational parameters in real-time, organizations can predict equipment failures before they occur, leading to reduced maintenance costs and enhanced robotic system uptime through timely interventions.</p> </li> <li> <p><strong>Cross-Platform Data Integration</strong>: Connect data gathered from ctrlX CORE devices into a centralized Cloud data warehouse using this plugin. By streaming real-time metrics to other systems, organizations can create a unified view of operational performance across various manufacturing and operational systems, enabling data-driven decision-making across diverse platforms.</p> </li> </ol>
Google BigQuery
<ol> <li> <p><strong>Real-Time Analytics Dashboard</strong>: Leverage the Google BigQuery plugin to feed live metrics into a custom analytics dashboard hosted on Google Cloud. This setup would allow teams to visualize performance data in real-time, providing insights into system health and usage patterns. By using BigQuery’s querying capabilities, users can easily create tailored reports and dashboards to meet their specific needs, thus enhancing decision-making processes.</p> </li> <li> <p><strong>Cost Management and Optimization Analysis</strong>: Utilize the plugin to automatically send cost-related metrics from various services into BigQuery. Analyzing this data can help businesses identify unnecessary expenses and optimize resource usage. By performing aggregation and transformation queries in BigQuery, organizations can create accurate forecasts and manage their cloud spending efficiently.</p> </li> <li> <p><strong>Cross-Team Collaboration on Monitoring Data</strong>: Enable different teams within an organization to share their monitoring data using BigQuery. With the help of this Telegraf plugin, teams can push their metrics to a central BigQuery instance, fostering collaboration. This data-sharing approach encourages best practices and cross-functional awareness, leading to collective improvements in system performance and reliability.</p> </li> <li> <p><strong>Historical Analysis for Capacity Planning</strong>: By using the BigQuery plugin, companies can collect and store historical metrics data essential for capacity planning. Analyzing trends over time can help anticipate system needs and scale infrastructure proactively. Organizations can create time-series analyses and identify patterns that inform their long-term strategic decisions.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration