DNS and IoTDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The DNS plugin enables users to monitor and gather statistics on DNS query times, facilitating performance analysis of DNS resolutions.</p>
<p>This plugin saves Telegraf metrics to an Apache IoTDB backend, supporting session connection and data insertion.</p>
Integration details
DNS
<p>This plugin gathers DNS query times in milliseconds, utilizing the capabilities of DNS queries similar to the Dig command. It provides a means to monitor and analyze DNS performance by measuring the response time from specified DNS servers, allowing network administrators and engineers to ensure optimal DNS resolution times. The plugin can be configured to target specific servers and customize the types of records queried, encompassing various DNS features such as resolving domain names to IP addresses, or retrieving details from specific records as needed, while also clearly reporting on the success or failure of each query, alongside relevant metadata.</p>
IoTDB
<p>Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Its light-weight architecture, high performance, and rich feature set create a perfect fit for massive data storage, high-speed data ingestion, and complex analytics in the IoT industrial fields. IoTDB deeply integrates with Apache Hadoop, Spark, and Flink, which further enhances its capabilities in handling large scale data and sophisticated processing tasks.</p>
Configuration
DNS
IoTDB
Input and output integration examples
DNS
<ol> <li> <p><strong>Monitor DNS Performance for Multiple Servers</strong>: By deploying the DNS plugin, a user can simultaneously monitor the performance of different DNS servers, such as Google DNS and Cloudflare DNS, by specifying them in the <code>servers</code> array. This scenario enables comparisons of response times and reliability across different DNS providers, assisting in selecting the best option based on empirical data.</p> </li> <li> <p><strong>Analyze Query Times for High-Traffic Domains</strong>: Integrate the plugin to measure response times specifically for high-traffic domains relevant to an organization’s operations, such as internal services or customer-facing sites. By focusing on performance metrics for these domains, organizations can proactively address latency issues, ensuring service reliability and improving user experiences.</p> </li> <li> <p><strong>Alerting on DNS Timeouts</strong>: Utilize the plugin in combination with alerting systems to notify administrators whenever a DNS query exceeds a defined timeout threshold. This setup can help in proactive troubleshooting of networking issues or server misconfigurations, fostering a rapid response to potential downtime scenarios.</p> </li> <li> <p><strong>Gather Historical Data for Performance Trends</strong>: Use the plugin to collect historical data on DNS query times over extended periods. This data can be used to analyze trends and patterns in DNS performance, enabling better capacity planning, identifying periodic issues, and justifying infrastructure upgrades or changes to DNS architectures.</p> </li> </ol>
IoTDB
<ol> <li> <p><strong>Real-Time IoT Monitoring</strong>: Utilize the IoTDB plugin to gather sensor data from various IoT devices and save it in an Apache IoTDB backend, facilitating real-time monitoring of environmental conditions such as temperature and humidity. This use case enables organizations to analyze trends over time and make informed decisions based on historical data, while also utilizing IoTDB’s efficient storage and querying capabilities.</p> </li> <li> <p><strong>Smart Agriculture Data Collection</strong>: Use the IoTDB plugin to collect metrics from smart agriculture sensors deployed in fields. By transmitting moisture levels, nutrient content, and atmospheric conditions to IoTDB, farmers can access detailed insights into optimal planting and watering schedules, thus improving crop yields and resource management.</p> </li> <li> <p><strong>Energy Consumption Analytics</strong>: Leverage the IoTDB plugin to track energy consumption metrics from smart meters across a utility network. This integration enables analytics to identify peaks in usage and predict future consumption patterns, ultimately supporting energy conservation initiatives and improved utility management.</p> </li> <li> <p><strong>Automated Industrial Equipment Monitoring</strong>: Use this plugin to gather operational metrics from machinery in a manufacturing plant and store them in IoTDB for analysis. This setup can help identify inefficiencies, predictive maintenance needs, and operational anomalies, ensuring optimal performance and minimizing unexpected downtimes.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration