Azure Event Hubs and Azure Data Explorer Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Azure Event Hubs Input Plugin allows Telegraf to consume data from Azure Event Hubs and Azure IoT Hub, enabling efficient data processing and monitoring of event streams from these cloud services.</p>
<p>The Azure Data Explorer plugin allows integration of metrics collection with Azure Data Explorer, enabling users to analyze and query their telemetry data efficiently. With this plugin, users can configure ingestion settings to suit their needs and leverage Azure’s powerful analytical capabilities.</p>
Integration details
Azure Event Hubs
<p>This plugin serves as a consumer for Azure Event Hubs and Azure IoT Hub, allowing users to ingest data streams from these platforms efficiently. Azure Event Hubs is a highly scalable data streaming platform and event ingestion service capable of receiving and processing millions of events per second, while Azure IoT Hub enables secure device-to-cloud and cloud-to-device communication in IoT applications. The Event Hub Input Plugin interacts seamlessly with these services, providing reliable message consumption and stream processing capabilities. Key features include dynamic management of consumer groups, message tracking to prevent data loss, and customizable settings for prefetch counts, user agents, and metadata handling. This plugin is designed to support a range of use cases, including real-time telemetry data collection, IoT data processing, and integration with various data analysis and monitoring tools within the broader Azure ecosystem.</p>
Azure Data Explorer
<p>The Azure Data Explorer plugin allows users to write metrics, logs, and time series data collected from various Telegraf input plugins into Azure Data Explorer, Azure Synapse, and Real-Time Analytics in Fabric. This integration serves as a bridge, allowing applications and services to monitor their performance metrics or logs efficiently. Azure Data Explorer is optimized for analytics over large volumes of diverse data types, making it an excellent choice for real-time analytics and monitoring solutions in cloud environments. The plugin empowers users to configure metrics ingestion based on their requirements, define table schemas dynamically, and set various ingestion methods while retaining flexibility regarding roles and permissions needed for database operations. This supports scalable and secure monitoring setups for modern applications that utilize cloud services.</p>
Configuration
Azure Event Hubs
Azure Data Explorer
Input and output integration examples
Azure Event Hubs
<ol> <li> <p><strong>Real-Time IoT Device Monitoring</strong>: Use the Azure Event Hubs Plugin to monitor telemetry data from IoT devices like sensors and actuators. By streaming device data into monitoring dashboards, organizations can gain insights into system performances, track usage patterns, and quickly respond to irregularities. This setup allows for proactive management of devices, improving operational efficiency and reducing downtime.</p> </li> <li> <p><strong>Event-Driven Data Processing Workflows</strong>: Leverage this plugin to trigger data processing workflows in response to events received from Azure Event Hubs. For instance, when a new event arrives, it can initiate data transformation, aggregation, or storage processes, allowing businesses to automate their workflows more effectively. This integration enhances responsiveness and streamlines operations across systems.</p> </li> <li> <p><strong>Integration with Analytics Platforms</strong>: Implement the plugin to funnel event data into analytics platforms like Azure Synapse or Power BI. By integrating real-time streaming data into analytics tools, organizations can perform comprehensive data analysis, drive business intelligence efforts, and create interactive visualizations that inform decision-making.</p> </li> <li> <p><strong>Cross-Platform Data Sync</strong>: Utilize the Azure Event Hubs Plugin to synchronize data streams across diverse systems or platforms. By consuming data from Azure Event Hubs and forwarding it to other systems like databases or cloud storage, organizations can maintain consistent and up-to-date information across their entire architecture, enabling cohesive data strategies.</p> </li> </ol>
Azure Data Explorer
<ol> <li> <p><strong>Real-Time Monitoring Dashboard</strong>: By integrating metrics from various services into Azure Data Explorer using this plugin, organizations can build comprehensive dashboards that reflect real-time performance metrics. This allows teams to respond proactively to performance issues and optimize system health without delay.</p> </li> <li> <p><strong>Centralized Log Management</strong>: Utilize Azure Data Explorer to consolidate logs from multiple applications and services. By utilizing the plugin, organizations can streamline their log analysis processes, making it easier to search, filter, and derive insights from historical data accumulated over time.</p> </li> <li> <p><strong>Data-Driven Alerting Systems</strong>: Enhance monitoring capabilities by configuring alerts based on metrics sent via this plugin. Organizations can set thresholds and automate incident responses, significantly reducing downtime and improving the reliability of critical operations.</p> </li> <li> <p><strong>Machine Learning Model Training</strong>: By leveraging the data sent to Azure Data Explorer, organizations can perform large-scale analytics and prepare the data for feeding into machine learning models. This plugin enables the structuring of data that can subsequently be used for predictive analytics, leading to enhanced decision-making capabilities.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration