Fireboard and Google Cloud Monitoring Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Fireboard plugin enables users to gather real-time temperature readings from Fireboard thermometers using the Fireboard REST API.</p>
<p>The Stackdriver plugin allows users to send metrics directly to a specified project in Google Cloud Monitoring, facilitating robust monitoring capabilities across their cloud resources.</p>
Integration details
Fireboard
<p>This plugin gathers real-time temperature data from Fireboard thermometers. Fireboard is a smart thermometer system that utilizes a REST API to provide user access to temperature monitoring. This plugin allows users to retrieve temperature readings efficiently, utilizing the provided authentication token. It can be configured with an optional server URL and custom HTTP timeout settings, providing flexibility depending on the user’s network conditions or potential changes to the Fireboard API. The metrics captured are essential for monitoring environments that require precise temperature control, thereby aiding in applications such as cooking, brewing, or any scenario where temperature variations are critical.</p>
Google Cloud Monitoring
<p>This plugin writes metrics to a project in Google Cloud Monitoring, which used to be known as Stackdriver. Authentication is a prerequisite and can be achieved via service accounts or user credentials. The plugin is designed to group metrics by a <code>namespace</code> variable and metric key, facilitating organized data management. However, users are encouraged to use the <code>official</code> naming format for enhanced query efficiency. The plugin supports additional configurations for managing metric representation and allows tags to be treated as resource labels. Notably, it imposes certain restrictions on the data it can accept, such as not allowing string values or points that are out of chronological order.</p>
Configuration
Fireboard
Google Cloud Monitoring
Input and output integration examples
Fireboard
<ol> <li> <p><strong>Smart Cooking Assistant</strong>: Integrate the Fireboard plugin into a smart kitchen ecosystem to monitor and adjust cooking temperatures in real-time. This setup can leverage the temperature data to automate processes like turning on or off heating elements based on the current cooking stage, ensuring optimal results.</p> </li> <li> <p><strong>Remote Brewing Monitoring</strong>: Use this plugin as part of a remote brewing setup for beer production. Brewers can monitor temperatures from multiple fireboards placed in different tanks and receive alerts when temperatures deviate from desired ranges, allowing for timely interventions.</p> </li> <li> <p><strong>Environmental Monitoring System</strong>: Incorporate this plugin into a broader environmental monitoring system that tracks temperature changes in various settings, from server rooms to greenhouses. This data can help maintain optimal conditions and can even be tied to automated cooling or heating systems for efficient climate control.</p> </li> <li> <p><strong>Automated Alerting for Temperature Sensitive Products</strong>: Employ the Fireboard plugin to monitor temperatures of products requiring specific storage conditions, such as pharmaceuticals or perishables. When temperature thresholds are breached, automated alerts could be sent to management systems to initiate corrective actions, thereby preventing spoilage.</p> </li> </ol>
Google Cloud Monitoring
<ol> <li> <p><strong>Multi-Project Metric Aggregation</strong>: Use this plugin to send aggregated metrics from various applications across different projects into a single Google Cloud Monitoring project. This use case helps centralize metrics for teams managing multiple applications, providing a unified view for performance monitoring and enhancing decision-making. By configuring different quota projects for billing, organizations can ensure proper cost management while benefiting from a consolidated monitoring strategy.</p> </li> <li> <p><strong>Anomaly Detection Setup</strong>: Integrate the plugin with a machine learning-based analytics tool that identifies anomalies in the collected metrics. Using the historical data provided by the plugin, the tool can learn normal baseline behavior and promptly alert the operations team when unusual patterns arise, enabling proactive troubleshooting and minimizing service disruptions.</p> </li> <li> <p><strong>Dynamic Resource Labeling</strong>: Implement dynamic tagging by utilizing the tags_as_resource_label option to adaptively attach resource labels based on runtime conditions. This setup allows metrics to provide context-sensitive information, such as varying environmental parameters or operational states, enhancing the granularity of monitoring and reporting without changing the fundamental metric structure.</p> </li> <li> <p><strong>Custom Metric Visualization Dashboards</strong>: Leverage the data collected by the Google Cloud Monitoring output plugin to feed a custom metrics visualization dashboard using a third-party framework. By visualizing metrics in real-time, teams can achieve better situational awareness, notably by correlating different metrics, improving operational decision-making, and streamlining performance management workflows.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration