Google Cloud Storage and TimescaleDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Google Cloud Storage plugin collects metrics from specified Google Cloud Storage buckets, providing insight into storage usage and performance.</p>
<p>This output plugin delivers a reliable and efficient mechanism for routing Telegraf collected metrics directly into TimescaleDB. By leveraging PostgreSQL’s robust ecosystem combined with TimescaleDB’s time series optimizations, it supports high-performance data ingestion and advanced querying capabilities.</p>
Integration details
Google Cloud Storage
<p>The Google Cloud Storage Telegraf plugin enables the collection of metrics from specified Google Cloud Storage buckets. As organizations increasingly rely on cloud storage solutions for their data management, the ability to monitor the performance and utilization of these resources becomes essential. This plugin is particularly useful for tracking how storage is used, understanding data patterns, and ensuring operational efficiency. By integrating with Google Cloud Storage APIs, it allows users to gather insights from their cloud environments, feeding metrics directly into monitoring systems for further analysis. The plugin supports various configuration options, enabling users to customize the data collection process based on their specific needs.</p>
TimescaleDB
<p>TimescaleDB is an open source time series database built as an extension to PostgreSQL, designed to handle large scale, time-oriented data efficiently. Launched in 2017, TimescaleDB emerged in response to the growing need for a robust, scalable solution that could manage vast volumes of data with high insert rates and complex queries. By leveraging PostgreSQL’s familiar SQL interface and enhancing it with specialized time series capabilities, TimescaleDB quickly gained popularity among developers looking to integrate time series functionality into existing relational databases. Its hybrid approach allows users to benefit from PostgreSQL’s flexibility, reliability, and ecosystem while providing optimized performance for time series data.</p> <p>The database is particularly effective in environments that demand fast ingestion of data points combined with sophisticated analytical queries over historical periods. TimescaleDB has a number of innovative features like hypertables which transparently partition data into manageable chunks and built-in continuous aggregation. These allow for significantly improved query speed and resource efficiency.</p>
Configuration
Google Cloud Storage
TimescaleDB
Input and output integration examples
Google Cloud Storage
<ol> <li> <p><strong>Automated Backup Monitoring</strong>: Utilize the Google Cloud Storage plugin to regularly monitor the status of backup files stored in a Cloud Storage bucket. By configuring the plugin to track file metrics, organizations can automate alerts if backup sizes deviate from expected patterns, ensuring that data protection processes are functioning properly and any anomalies are promptly addressed.</p> </li> <li> <p><strong>Cost Optimization Insights</strong>: Integrate this plugin into a cost management tool to analyze the usage patterns of Cloud Storage. By collecting metrics on file sizes and access frequencies, teams can optimize their storage solutions and make informed decisions about data retention policies, potentially reducing unnecessary storage costs and improving resource allocation.</p> </li> <li> <p><strong>Compliance and Auditing</strong>: Use the plugin to generate metrics that aid in compliance verification for data stored in Google Cloud Storage. By providing detailed insights into data access and storage usage, organizations can ensure adherence to regulatory requirements, helping in audits and aligning with best practices for data governance.</p> </li> <li> <p><strong>Performance Benchmarking</strong>: Deploy the plugin to benchmark the performance of data retrieval and storage operations in Google Cloud Storage. By analyzing metrics over time, teams can identify performance bottlenecks or inefficiencies, allowing them to optimize their applications and infrastructure that depend on cloud storage services.</p> </li> </ol>
TimescaleDB
<ol> <li> <p><strong>Real-Time IoT Data Ingestion</strong>: Use the plugin to collect and store sensor data from thousands of IoT devices in real time. This setup facilitates immediate analysis, helping organizations monitor operational efficiency and respond quickly to changing conditions.</p> </li> <li> <p><strong>Cloud Application Performance Monitoring</strong>: Leverage the plugin to feed detailed performance metrics from distributed cloud applications into TimescaleDB. This integration supports real-time dashboards and alerts, enabling teams to swiftly identify and mitigate performance bottlenecks.</p> </li> <li> <p><strong>Historical Data Analysis and Reporting</strong>: Implement a system where long-term metrics are stored in TimescaleDB for comprehensive historical analysis. This approach allows businesses to perform trend analysis, generate detailed reports, and make data-driven decisions based on archived time-series data.</p> </li> <li> <p><strong>Adaptive Alerting and Anomaly Detection</strong>: Integrate the plugin with automated anomaly detection workflows. By continuously streaming metrics to TimescaleDB, machine learning models can analyze data patterns and trigger alerts when anomalies occur, enhancing system reliability and proactive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration