InfiniBand and PostgreSQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The InfiniBand Telegraf plugin collects performance metrics from all InfiniBand devices installed on a Linux system, providing essential insights for monitoring network performance and reliability.</p>
<p>The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.</p>
Integration details
InfiniBand
<p>This plugin gathers statistics for all InfiniBand devices and ports on the system. InfiniBand is a high-speed networking technology commonly used in high-performance computing and enterprise data centers. The plugin retrieves various performance counters from the system’s InfiniBand devices located in <code>/sys/class/infiniband/<dev>/port/<port>/counters/</code>. The metrics depend on the specific InfiniBand hardware and include various packet and error statistics that are essential for monitoring network health and performance. By utilizing this plugin, users can gain insights into the operational status of their InfiniBand networks, helping to identify potential issues and optimize performance.</p>
PostgreSQL
<p>The PostgreSQL plugin enables users to write metrics to a PostgreSQL database or a compatible database, providing robust support for schema management by automatically updating missing columns. The plugin is designed to facilitate integration with monitoring solutions, allowing users to efficiently store and manage time series data. It offers configurable options for connection settings, concurrency, and error handling, and supports advanced features such as JSONB storage for tags and fields, foreign key tagging, templated schema modifications, and support for unsigned integer data types through the pguint extension.</p>
Configuration
InfiniBand
PostgreSQL
Input and output integration examples
InfiniBand
<ol> <li> <p><strong>Performance Monitoring in High-Performance Computing (HPC)</strong>: Monitor the performance metrics of InfiniBand interconnects in a high-performance computing cluster. By analyzing metrics such as packet errors and throughput, system administrators can ensure optimal operation and quickly identify any performance degradation. This setup enhances the reliability of computational tasks by allowing timely interventions based on accurate monitoring data.</p> </li> <li> <p><strong>Network Health Audits</strong>: Perform routine health checks of InfiniBand networks. The detailed metrics gathered, such as excessive buffer overruns and link integrity errors, provide valuable insights for network audits. By establishing baseline performance and watching for anomalies, IT professionals can ensure the stability and performance of critical infrastructures.</p> </li> <li> <p><strong>Integration with Alerting Systems</strong>: Set up the InfiniBand plugin to work in conjunction with alerting systems to trigger notifications based on performance thresholds. For instance, if the number of link errors exceeds a predefined limit, an alert can be sent to the network operations team. This proactive approach ensures that potential issues are addressed before they impact business operations.</p> </li> <li> <p><strong>Data Visualization Dashboards</strong>: Feed InfiniBand metrics to a visualization tool to create dashboards that display the real-time performance of the network. This can help stakeholders visualize critical data such as packet transmission rates and errors, facilitating better decision-making regarding network management and capacity planning.</p> </li> </ol>
PostgreSQL
<ol> <li> <p><strong>Real-Time Analytics with Complex Queries</strong>: Leverage the PostgreSQL plugin to store metrics from various sources in a PostgreSQL database, enabling real-time analytics using complex queries. This setup can help data scientists and analysts uncover patterns and trends, as they manipulate relational data across multiple tables while utilizing PostgreSQL’s robust query optimization features. Specifically, users can create sophisticated reports with JOIN operations across different metric tables, revealing insights that would typically remain hidden in embedded systems.</p> </li> <li> <p><strong>Integrating with TimescaleDB for Time-Series Data</strong>: Utilize the PostgreSQL plugin within a TimescaleDB instance to efficiently handle and analyze time-series data. By implementing hypertables, users can achieve greater performance and partitioning of topics over the time dimension. This integration allows users to run analytical queries over large amounts of time-series data while retaining the full power of PostgreSQL’s SQL queries, ensuring reliability and efficiency in metrics analysis.</p> </li> <li> <p><strong>Data Versioning and Historical Analysis</strong>: Implement a strategy using the PostgreSQL plugin to maintain different versions of metrics over time. Users can set up an immutable data table structure where older versions of tables are retained, enabling easy historical analysis. This approach not only provides insights into data evolution but also aids compliance with data retention policies, ensuring that the historical integrity of the datasets remains intact.</p> </li> <li> <p><strong>Dynamic Schema Management for Evolving Metrics</strong>: Use the plugin’s templating capabilities to create a dynamically changing schema that responds to metric variations. This use case allows organizations to adapt their data structure as metrics evolve, adding necessary fields and ensuring adherence to data integrity policies. By leveraging templated SQL commands, users can extend their database without manual intervention, facilitating agile data management practices.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration