Intel PowerStat and Snowflake Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>Monitor power statistics on Intel-based platforms and is compatible with Linux-based operating systems. It helps in understanding and managing power efficiency and CPU performance.</p>
<p>Telegraf’s SQL plugin allows seamless metric storage in SQL databases. When configured for Snowflake, it employs a specialized DSN format and dynamic table creation to map metrics to the appropriate schema.</p>
Integration details
Intel PowerStat
<p>The Intel PowerStat plugin is designed to monitor power statistics specifically on Intel-based platforms running a Linux operating system. It offers visibility into critical metrics such as CPU temperature, utilization, and power consumption, making it essential for power saving initiatives and workload migration strategies. By leveraging telemetry frameworks, this plugin enables users to gain insights into platform-level metrics that help with monitoring and analytics systems in the context of Management and Orchestration (MANO). It facilitates the ability to make informed decisions and perform corrective actions based on the state of the platform, ultimately contributing to better system efficiency and reliability.</p>
Snowflake
<p>Telegraf’s SQL plugin is engineered to dynamically write metrics into an SQL database by creating tables and columns based on the incoming data. When configured for Snowflake, it employs the gosnowflake driver, which uses a DSN that encapsulates credentials, account details, and database configuration in a compact format. This setup allows for the automatic generation of tables where each metric is recorded with precise timestamps, thereby ensuring detailed historical tracking. Although the integration is considered experimental, it leverages Snowflake’s powerful data warehousing capabilities, making it suitable for scalable, cloud-based analytics and reporting solutions.</p>
Configuration
Intel PowerStat
Snowflake
Input and output integration examples
Intel PowerStat
<ol> <li> <p><strong>Optimizing Data Center Energy Usage</strong>: Monitor power consumption metrics across all CPUs in a data center. By capturing real-time data, administrators can identify which servers consume the most power and implement shutdowns or load balancing strategies during low demand periods, effectively reducing operational costs.</p> </li> <li> <p><strong>Dynamic Workload Migration Based on Power Efficiency</strong>: Integrate this plugin with a cloud orchestration tool to enable dynamic migration of workloads based on power usage metrics. If a particular server is recorded as consuming excessive power without corresponding output, the orchestrator can seamlessly migrate workloads to more efficient nodes, ensuring optimal resource utilization and lower energy expenses.</p> </li> <li> <p><strong>Monitoring and Alerting Mechanism for Overheating CPUs</strong>: Implement an alerting system using the CPU temperature metrics captured by Intel PowerStat. Setting thresholds for temperature can alert system administrators when a CPU is prone to overheating, allowing proactive measures to be taken before hardware damage occurs, ultimately extending the life of the components.</p> </li> <li> <p><strong>Performance Benchmarking for CPU-intensive Applications</strong>: Use the metrics provided to benchmark the performance of CPU-intensive applications. By analyzing the <code>cpu_frequency</code>, <code>cpu_temperature</code>, and power metrics under load, developers can optimize application performance and make informed decisions regarding scaling and resource allocation.</p> </li> </ol>
Snowflake
<ol> <li> <p><strong>Cloud-Based Data Lake Integration</strong>: Utilize the plugin to stream real-time metrics from various sources into Snowflake, enabling the creation of a centralized data lake. This integration supports complex analytics and machine learning workflows on cloud data.</p> </li> <li> <p><strong>Dynamic Business Intelligence Dashboards</strong>: Leverage the plugin to automatically generate tables from incoming metrics and feed them into BI tools. This allows businesses to create dynamic dashboards that visualize performance trends and operational insights without manual schema management.</p> </li> <li> <p><strong>Scalable IoT Analytics</strong>: Deploy the plugin to capture high-frequency data from IoT devices into Snowflake. This use case facilitates the aggregation and analysis of sensor data, enabling predictive maintenance and real-time monitoring at scale.</p> </li> <li> <p><strong>Historical Trend Analysis for Compliance</strong>: Use the plugin to log and archive detailed metric data in Snowflake, which can then be queried for long-term trend analysis and compliance reporting. This setup ensures that organizations can maintain a robust audit trail and perform forensic analysis if needed.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration