IPMI Sensor and AWS Timestream Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The IPMI Sensor Plugin facilitates the collection of server health metrics directly from hardware via the IPMI protocol, querying sensor data from either local or remote systems.</p>
<p>The AWS Timestream Telegraf plugin enables users to send metrics directly to Amazon’s Timestream service, which is designed for time series data management. This plugin offers a variety of configuration options for authentication, data organization, and retention settings.</p> <p>With the coming End of Life of AWS Timestream for LiveAnalytics, you can easily switch to AWS Timestream for InfluxDB or other verions of InfluxDB hosted on AWS by using the <a href="https://www.influxdata.com/integrations/influxdb/">InfluxDB Telegraf plugin</a>. Learn more about <a href="https://www.influxdata.com/influxdb-cloud-on-aws/">AWS and InfluxDB</a></p>
Integration details
IPMI Sensor
<p>The IPMI Sensor plugin is designed to gather bare metal metrics via the command line utility <code>ipmitool</code>, which interfaces with the Intelligent Platform Management Interface (IPMI). This protocol provides management and monitoring capabilities for hardware components in server systems, allowing for the retrieval of critical system health metrics such as temperature, fan speeds, and power supply status from both local and remote servers. When configured without specified servers, the plugin defaults to querying the local machine’s sensor statistics using the <code>ipmitool sdr</code> command. In scenarios covering remote hosts, authentication is supported through username and password using the command format <code>ipmitool -I lan -H SERVER -U USERID -P PASSW0RD sdr</code>. This flexibility allows users to monitor systems effectively across various environments. The plugin also supports multiple sensor types, including chassis power status and DCMI power readings, catering to administrators needing real-time insight into server operations.</p>
AWS Timestream
<p>This plugin is designed to efficiently write metrics to Amazon’s Timestream for LiveAnalytics service. With AWS no longer accepting new users for their LiveAnalytics service, consider using the <a href="https://www.influxdata.com/integrations/influxdb/">InfluxDB plugin</a> with AWS Timestream for InfluxDB or other <a href="https://www.influxdata.com/influxdb-cloud-on-aws/">InfluxDB options available on AWS</a>. This plugin Telegraf can send data collected from various sources and supports a flexible configuration for authentication, data organization, and retention management. It utilizes a credential chain for authentication, allowing various methods such as web identity, assumed roles, and shared profiles. Users can define how metrics are organized in Timestream—whether to use a single table or multiple tables, alongside control over aspect such as retention periods for both magnetic and memory stores. A key feature is its ability to handle multi-measure records, enabling efficient data ingestion and helping to reduce the overhead of multiple writes. In terms of error handling, the plugin includes mechanisms for addressing common issues related to AWS errors during data writes, such as retry logic for throttling and the ability to create tables as needed.</p>
Configuration
IPMI Sensor
AWS Timestream
Input and output integration examples
IPMI Sensor
<ol> <li> <p><strong>Centralized Monitoring Dashboard</strong>: Utilize the IPMI Sensor plugin to gather metrics from multiple servers and compile them into a centralized monitoring dashboard. This enables real-time visibility into server health across data centers. Administrators can track metrics like temperature and power usage, helping them make data-driven decisions about resource allocation, potential failures, and maintenance schedules.</p> </li> <li> <p><strong>Automated Power Alerts</strong>: Incorporate the plugin into an alerting system that monitors chassis power status and triggers alerts when anomalies are detected. For instance, if the power status indicates a failure or if watt values exceed expected thresholds, automated notifications can be sent to operations teams, ensuring prompt attention to hardware issues.</p> </li> <li> <p><strong>Energy Consumption Analysis</strong>: Leverage the DCMI power readings collected via the plugin to analyze energy consumption patterns of hardware over time. By integrating these readings with analytics platforms, organizations can identify opportunities to reduce power usage, optimize efficiency, and potentially decrease operational costs in large server farms or cloud infrastructures.</p> </li> <li> <p><strong>Health Check Automation</strong>: Schedule regular health checks by using the IPMI Sensor Plugin to collect data from a fleet of servers. This data can be logged and compared against historical performance metrics to identify trends, outliers, or signs of impending hardware failure, allowing IT teams to take proactive measures and reduce downtime.</p> </li> </ol>
AWS Timestream
<ol> <li> <p><strong>IoT Data Metrics</strong>: Use the Timestream plugin to send real-time metrics from IoT devices to Timestream, allowing for quick analysis and visualization of sensor data. By organizing device readings into a time series format, users can track trends, identify anomalies, and streamline operational decisions based on device performance.</p> </li> <li> <p><strong>Application Performance Monitoring</strong>: Leverage Timestream alongside application monitoring tools to send metrics about service performance over time. This integration enables engineers to perform historical analysis of application performance, correlate it with business metrics, and optimize resource allocation based on usage patterns viewed over time.</p> </li> <li> <p><strong>Automated Data Archiving</strong>: Configure the Timestream plugin to write data to Timestream while simultaneously managing retention periods. This setup can automate archiving strategies, ensuring that older data is preserved according to predefined criteria. This is especially useful for compliance and historical analysis, allowing businesses to maintain their data lifecycle with minimal manual intervention.</p> </li> <li> <p><strong>Multi-Application Metrics Aggregation</strong>: Utilize the Timestream plugin to aggregate metrics from multiple applications into Timestream. By creating a unified database of performance metrics, organizations can gain holistic insights across various services, improving visibility into system-wide performance and facilitating cross-application troubleshooting.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration