IPVS and TimescaleDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The IPVS plugin is designed to collect metrics related to IPVS virtual and real servers on Linux systems.</p>
<p>This output plugin delivers a reliable and efficient mechanism for routing Telegraf collected metrics directly into TimescaleDB. By leveraging PostgreSQL’s robust ecosystem combined with TimescaleDB’s time series optimizations, it supports high-performance data ingestion and advanced querying capabilities.</p>
Integration details
IPVS
<p>The IPVS plugin gathers metrics about IPVS virtual and real servers using the Linux kernel netlink socket interface. As a component specifically designed for Linux, it tracks performance related to IP virtual servers, allowing users to monitor various attributes such as active connections, packet statistics, and byte counts. Key metrics include those for both virtual and real servers, facilitating a comprehensive view of server performance. The plugin also requires the Telegraf process to run with appropriate permissions, typically as root or a user with specific capabilities for proper operation.</p>
TimescaleDB
<p>TimescaleDB is an open source time series database built as an extension to PostgreSQL, designed to handle large scale, time-oriented data efficiently. Launched in 2017, TimescaleDB emerged in response to the growing need for a robust, scalable solution that could manage vast volumes of data with high insert rates and complex queries. By leveraging PostgreSQL’s familiar SQL interface and enhancing it with specialized time series capabilities, TimescaleDB quickly gained popularity among developers looking to integrate time series functionality into existing relational databases. Its hybrid approach allows users to benefit from PostgreSQL’s flexibility, reliability, and ecosystem while providing optimized performance for time series data.</p> <p>The database is particularly effective in environments that demand fast ingestion of data points combined with sophisticated analytical queries over historical periods. TimescaleDB has a number of innovative features like hypertables which transparently partition data into manageable chunks and built-in continuous aggregation. These allow for significantly improved query speed and resource efficiency.</p>
Configuration
IPVS
TimescaleDB
Input and output integration examples
IPVS
<ol> <li> <p><strong>Load Balancing Performance Monitoring</strong>: Use the IPVS plugin to monitor the performance of a load balancing setup in a Linux environment where IPVS is implemented. By collecting metrics such as byte counts, packet rates, and active connections, administrators can gain real-time insights into server performance, allowing for proactive adjustments to load distribution strategies and ensuring that no individual server becomes a bottleneck.</p> </li> <li> <p><strong>Automated Alerting for Connection Thresholds</strong>: Integrate the metrics collected by the IPVS plugin with an alerting system to automatically notify administrators when active connections exceed or fall below specified thresholds. This use case enables dynamic scaling of backend resources, optimizing application performance and resource utilization, while minimizing the risk of sudden service disruptions.</p> </li> <li> <p><strong>Historical Performance Trend Analysis</strong>: Store the metrics gathered by the IPVS plugin in a time-series database for historical analysis. By analyzing trends over time, organizations can identify patterns in server performance, correlate them with application usage spikes, and make informed decisions regarding infrastructure upgrades or maintenance schedules to better handle peak loads.</p> </li> </ol>
TimescaleDB
<ol> <li> <p><strong>Real-Time IoT Data Ingestion</strong>: Use the plugin to collect and store sensor data from thousands of IoT devices in real time. This setup facilitates immediate analysis, helping organizations monitor operational efficiency and respond quickly to changing conditions.</p> </li> <li> <p><strong>Cloud Application Performance Monitoring</strong>: Leverage the plugin to feed detailed performance metrics from distributed cloud applications into TimescaleDB. This integration supports real-time dashboards and alerts, enabling teams to swiftly identify and mitigate performance bottlenecks.</p> </li> <li> <p><strong>Historical Data Analysis and Reporting</strong>: Implement a system where long-term metrics are stored in TimescaleDB for comprehensive historical analysis. This approach allows businesses to perform trend analysis, generate detailed reports, and make data-driven decisions based on archived time-series data.</p> </li> <li> <p><strong>Adaptive Alerting and Anomaly Detection</strong>: Integrate the plugin with automated anomaly detection workflows. By continuously streaming metrics to TimescaleDB, machine learning models can analyze data patterns and trigger alerts when anomalies occur, enhancing system reliability and proactive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration