JTI OpenConfig Telemetry and AWS Timestream Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The JTI OpenConfig Telemetry plugin allows users to collect real-time telemetry data from devices running Juniper’s implementation of the OpenConfig model, leveraging the Junos Telemetry Interface for efficient data retrieval.</p>
<p>The AWS Timestream Telegraf plugin enables users to send metrics directly to Amazon’s Timestream service, which is designed for time series data management. This plugin offers a variety of configuration options for authentication, data organization, and retention settings.</p> <p>With the coming End of Life of AWS Timestream for LiveAnalytics, you can easily switch to AWS Timestream for InfluxDB or other verions of InfluxDB hosted on AWS by using the <a href="https://www.influxdata.com/integrations/influxdb/">InfluxDB Telegraf plugin</a>. Learn more about <a href="https://www.influxdata.com/influxdb-cloud-on-aws/">AWS and InfluxDB</a></p>
Integration details
JTI OpenConfig Telemetry
<p>This plugin reads data from Juniper Networks’ OpenConfig telemetry implementation using the Junos Telemetry Interface (JTI). OpenConfig is an initiative aimed at enabling standardized and open network device telemetry through a common model for various devices and protocols. The JTI allows for the collection of this telemetry data in a real-time manner from various sensors defined within the configuration. Configurable parameters for this plugin include the ability to specify device addresses, authentication credentials, sampling frequency, and multiple sensors with potentially different reporting rates. The plugin uniquely handles time-stamping either through the collection time or the timestamp provided in the data, allowing for flexibility in how data is processed. Given its support for TLS for secure communication, the plugin is well-suited for integration into both traditional and modern network management systems, enhancing visibility into network performance and reliability.</p>
AWS Timestream
<p>This plugin is designed to efficiently write metrics to Amazon’s Timestream for LiveAnalytics service. With AWS no longer accepting new users for their LiveAnalytics service, consider using the <a href="https://www.influxdata.com/integrations/influxdb/">InfluxDB plugin</a> with AWS Timestream for InfluxDB or other <a href="https://www.influxdata.com/influxdb-cloud-on-aws/">InfluxDB options available on AWS</a>. This plugin Telegraf can send data collected from various sources and supports a flexible configuration for authentication, data organization, and retention management. It utilizes a credential chain for authentication, allowing various methods such as web identity, assumed roles, and shared profiles. Users can define how metrics are organized in Timestream—whether to use a single table or multiple tables, alongside control over aspect such as retention periods for both magnetic and memory stores. A key feature is its ability to handle multi-measure records, enabling efficient data ingestion and helping to reduce the overhead of multiple writes. In terms of error handling, the plugin includes mechanisms for addressing common issues related to AWS errors during data writes, such as retry logic for throttling and the ability to create tables as needed.</p>
Configuration
JTI OpenConfig Telemetry
AWS Timestream
Input and output integration examples
JTI OpenConfig Telemetry
<ol> <li> <p><strong>Network Performance Monitoring</strong>: Use the JTI OpenConfig Telemetry plugin to monitor network performance metrics from multiple Juniper devices in real-time. By configuring various sensors, operators can gain insights into interface performance, traffic patterns, and error rates, allowing for proactive troubleshooting and optimization of the network.</p> </li> <li> <p><strong>Automated Fault Detection</strong>: Integrate the telemetry data collected via this plugin with a fault detection system that triggers alerts based on predefined thresholds. For example, when a specific sensor indicates a fault or threshold breach, automated scripts can be initiated to remediate the situation, dramatically improving response times.</p> </li> <li> <p><strong>Historical Performance Analysis</strong>: By forwarding the collected telemetry data into a time-series database, organizations can perform historical analysis on network performance. This enables teams to identify trends over time, spot anomalies, and make more informed decisions regarding network capacity planning and resource allocation.</p> </li> <li> <p><strong>Real-Time Dashboards for Network Operations</strong>: Leverage the real-time data gathered through this plugin to power visualization dashboards that provide network operators with live insights into performance metrics. This facilitates better operational awareness and quicker decision-making during critical events.</p> </li> </ol>
AWS Timestream
<ol> <li> <p><strong>IoT Data Metrics</strong>: Use the Timestream plugin to send real-time metrics from IoT devices to Timestream, allowing for quick analysis and visualization of sensor data. By organizing device readings into a time series format, users can track trends, identify anomalies, and streamline operational decisions based on device performance.</p> </li> <li> <p><strong>Application Performance Monitoring</strong>: Leverage Timestream alongside application monitoring tools to send metrics about service performance over time. This integration enables engineers to perform historical analysis of application performance, correlate it with business metrics, and optimize resource allocation based on usage patterns viewed over time.</p> </li> <li> <p><strong>Automated Data Archiving</strong>: Configure the Timestream plugin to write data to Timestream while simultaneously managing retention periods. This setup can automate archiving strategies, ensuring that older data is preserved according to predefined criteria. This is especially useful for compliance and historical analysis, allowing businesses to maintain their data lifecycle with minimal manual intervention.</p> </li> <li> <p><strong>Multi-Application Metrics Aggregation</strong>: Utilize the Timestream plugin to aggregate metrics from multiple applications into Timestream. By creating a unified database of performance metrics, organizations can gain holistic insights across various services, improving visibility into system-wide performance and facilitating cross-application troubleshooting.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration