Kafka and VictoriaMetrics Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin allows you to gather metrics from Kafka topics in real-time, enhancing data monitoring and collection capabilities within your Telegraf setup.</p>
<p>This plugin enables Telegraf to efficiently write metrics directly into VictoriaMetrics using the InfluxDB line protocol, leveraging the performance and scalability features of VictoriaMetrics for large-scale time-series data.</p>
Integration details
Kafka
<p>The Kafka Telegraf plugin is designed to read data from Kafka topics and create metrics using supported input data formats. As a service input plugin, it listens continuously for incoming metrics and events, differing from standard input plugins that operate at fixed intervals. This particular plugin can utilize features from various Kafka versions and is capable of consuming messages from specified topics, applying configurations such as security credentials using SASL, and managing message processing with options for message offsets and consumer groups. The flexibility of this plugin allows it to handle a wide array of message formats and use cases, making it a valuable asset for applications relying on Kafka for data ingestion.</p>
VictoriaMetrics
<p>VictoriaMetrics supports direct ingestion of metrics in the InfluxDB line protocol, making this plugin ideal for efficient real-time metric storage and retrieval. The integration combines Telegraf’s extensive metric collection capabilities with VictoriaMetrics’ optimized storage and querying features, including compression, fast ingestion rates, and efficient disk utilization. Ideal for cloud-native and large-scale monitoring scenarios, this plugin offers simplicity, robust performance, and high reliability, enabling advanced operational insights and long-term storage solutions for large volumes of metrics.</p>
Configuration
Kafka
VictoriaMetrics
Input and output integration examples
Kafka
<ol> <li> <p><strong>Real-Time Data Processing</strong>: Use the Kafka plugin to feed live data from a Kafka topic into a monitoring system. This can be particularly useful for applications that require instant feedback on performance metrics or user activity, allowing businesses to react more swiftly to changing conditions in their environments.</p> </li> <li> <p><strong>Dynamic Metrics Collection</strong>: Leverage this plugin to dynamically adjust the metrics being captured based on events occurring within Kafka. For instance, by integrating with other services, users can have the plugin reconfigure itself on-the-fly, ensuring relevant metrics are always collected according to the needs of the business or application.</p> </li> <li> <p><strong>Centralized Logging and Monitoring</strong>: Implement a centralized logging system using the Kafka Consumer Plugin to aggregate logs from multiple services into a unified monitoring dashboard. This setup can help identify issues across different services and improve overall system observability and troubleshooting capabilities.</p> </li> <li> <p><strong>Anomaly Detection System</strong>: Combine Kafka with machine learning algorithms for real-time anomaly detection. By constantly analyzing streaming data, this setup can automatically identify unusual patterns, triggering alerts and mitigating potential issues more effectively.</p> </li> </ol>
VictoriaMetrics
<ol> <li> <p><strong>Cloud-Native Application Monitoring</strong>: Stream metrics from microservices deployed on Kubernetes directly into VictoriaMetrics. By centralizing metrics, organizations can perform real-time monitoring, rapid anomaly detection, and seamless scalability across dynamically evolving cloud environments.</p> </li> <li> <p><strong>Scalable IoT Data Management</strong>: Use the plugin to ingest sensor data from IoT deployments into VictoriaMetrics. This approach facilitates real-time analytics, predictive maintenance, and efficient management of massive volumes of sensor data with minimal storage overhead.</p> </li> <li> <p><strong>Financial Systems Performance Tracking</strong>: Leverage VictoriaMetrics via this plugin to store and analyze metrics from financial systems, capturing latency, transaction volume, and error rates. Organizations can rapidly identify and resolve performance bottlenecks, ensuring high availability and regulatory compliance.</p> </li> <li> <p><strong>Cross-Environment Performance Dashboards</strong>: Integrate metrics from diverse infrastructure components—such as cloud instances, containers, and physical servers into VictoriaMetrics. Using visualization tools, teams can build comprehensive dashboards for end-to-end performance visibility, proactive troubleshooting, and infrastructure optimization.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration