Kinesis and Clarify Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Kinesis plugin enables you to read from Kinesis data streams, supporting various data formats and configurations.</p>
<p>The Clarify plugin allows users to publish Telegraf metrics directly to Clarify, enabling enhanced analysis and monitoring capabilities.</p>
Integration details
Kinesis
<p>The Kinesis Telegraf plugin is designed to read from Amazon Kinesis data streams, enabling users to gather metrics in real-time. As a service input plugin, it operates by listening for incoming data rather than polling at regular intervals. The configuration specifies various options including the AWS region, stream name, authentication credentials, and data formats. It supports tracking of undelivered messages to prevent data loss, and users can utilize DynamoDB for maintaining checkpoints of the last processed records. This plugin is particularly useful for applications requiring reliable and scalable stream processing alongside other monitoring needs.</p>
Clarify
<p>This plugin facilitates the writing of Telegraf metrics to Clarify, a platform for managing and analyzing time series data. By transforming metrics into Clarify signals, this output plugin enables seamless integration of collected telemetry data into the Clarify ecosystem. Users must obtain valid credentials, either through a credentials file or basic authentication, to configure the plugin. The configuration also provides options for fine-tuning how metrics are mapped to signals in Clarify, including the ability to specify unique identifiers using tags. Given that Clarify supports only floating point values, the plugin ensures that any unsupported types are effectively filtered out during the publishing process. This comprehensive connectivity aligns with use cases in monitoring, data analysis, and operational insights.</p>
Configuration
Kinesis
Clarify
Input and output integration examples
Kinesis
<ol> <li> <p><strong>Real-Time Data Processing with Kinesis</strong>: This use case involves integrating the Kinesis plugin with a monitoring dashboard to analyze incoming data metrics in real-time. For instance, an application could consume logs from multiple services and present them visually, allowing operations teams to quickly identify trends and react to anomalies as they occur.</p> </li> <li> <p><strong>Serverless Log Aggregation</strong>: Utilize this plugin in a serverless architecture where Kinesis streams aggregate logs from various microservices. The plugin can create metrics that help detect issues in the system, automating alerting processes through third-party integrations, enabling teams to minimize downtime and improve reliability.</p> </li> <li> <p><strong>Dynamic Scaling Based on Stream Metrics</strong>: Implement a solution where stream metrics consumed by the Kinesis plugin could be used to adjust resources dynamically. For example, if the number of records processed spikes, corresponding scale-up actions could be triggered to handle the increased load, ensuring optimal resource allocation and performance.</p> </li> <li> <p><strong>Data Pipeline to S3 with Checkpointing</strong>: Create a robust data pipeline where Kinesis stream data is processed through the Telegraf Kinesis plugin, with checkpoints stored in DynamoDB. This approach can ensure data consistency and reliability, as it manages the state of processed data, enabling seamless integration with downstream data lakes or storage solutions.</p> </li> </ol>
Clarify
<ol> <li> <p><strong>Automated Data Monitoring</strong>: By integrating the Clarify plugin with sensor data collection, organizations can automate the monitoring of environmental conditions, such as temperature and humidity. The plugin processes metrics in real-time, sending updates to Clarify where they can be analyzed for trends, alerts, and historical tracking. This use case makes it easier to maintain optimal conditions in data centers or production environments, reducing the risk of equipment failures.</p> </li> <li> <p><strong>Performance Metrics Analysis</strong>: Companies can leverage this plugin to send application performance metrics to Clarify. By transmitting key indicators such as response times and error rates, developers and operations teams can utilize Clarify’s capabilities to visualize and analyze application performance over time. This insight can drive improvements in user experience and help identify areas in need of optimization.</p> </li> <li> <p><strong>Sensor Data Aggregation</strong>: Utilizing the plugin to push data from multiple sensors to Clarify allows for a comprehensive view of physical environments. This aggregation is particularly beneficial in sectors such as agriculture, where metrics from various sensors can be correlated to decision-making about resource allocations, pest control, and crop management. The plugin ensures the data is accurately mapped and transformed for effective analysis.</p> </li> <li> <p><strong>Real-Time Alerts and Notifications</strong>: Implement the Clarify plugin to trigger real-time alerts based on predefined thresholds within the metrics being sent. For instance, if temperature readings exceed certain levels, alerts can be generated and sent to operational staff. This proactive approach allows for immediate responses to potential issues, enhancing operational reliability and safety.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration