Kubernetes and Clickhouse Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin captures metrics for Kubernetes pods and containers by communicating with the Kubelet API.</p>
<p>Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.</p>
Integration details
Kubernetes
<p>The Kubernetes input plugin interfaces with the Kubelet API to gather metrics for running pods and containers on a single host, ideally as part of a daemonset in a Kubernetes installation. By operating on each node within the cluster, it collects metrics from the locally running kubelet, ensuring that the data reflects the real-time state of the environment. Being a rapidly evolving project, Kubernetes sees frequent updates, and this plugin adheres to the major cloud providers’ supported versions, maintaining compatibility across multiple releases within a limited time span. Significant consideration is given to the potential high series cardinality, which can burden the database; thus, users are advised to implement filtering techniques and retention policies to manage this load effectively. Configuration options provide flexible customization of the plugin’s behavior to integrate seamlessly into different setups, enhancing its utility in monitoring Kubernetes environments.</p>
Clickhouse
<p>Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.</p>
Configuration
Kubernetes
Clickhouse
Input and output integration examples
Kubernetes
<ol> <li> <p><strong>Dynamic Resource Allocation Monitoring</strong>: By utilizing the Kubernetes plugin, teams can set up alerts for resource usage patterns across various pods and containers. This proactive monitoring approach enables automatic scaling of resources in response to specific thresholds—helping to optimize performance while minimizing costs during peak usage.</p> </li> <li> <p><strong>Multi-tenancy Resource Isolation Analysis</strong>: Organizations using Kubernetes can leverage this plugin to track resource consumption per namespace. In a multi-tenant scenario, understanding the resource allocations and usages across different teams becomes critical for ensuring fair access and performance guarantees, leading to better resource management strategies.</p> </li> <li> <p><strong>Real-time Health Dashboards</strong>: Integrate the data captured by the Kubernetes plugin into visualization tools like Grafana to create real-time dashboards. These dashboards provide insights into the overall health and performance of the Kubernetes environment, allowing teams to quickly identify and rectify issues across clusters, pods, and containers.</p> </li> <li> <p><strong>Automated Incident Response Workflows</strong>: By combining the Kubernetes plugin with alert management systems, teams can automate incident response procedures based on real-time metrics. If a pod’s resource usage exceeds predefined limits, an automated workflow can trigger remediation actions, such as restarting the pod or reallocating resources—all of which can help improve system resilience.</p> </li> </ol>
Clickhouse
<ol> <li> <p><strong>Real-Time Analytics for High-Volume Data</strong>: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.</p> </li> <li> <p><strong>Time-Series Data Warehousing</strong>: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.</p> </li> <li> <p><strong>Scalable Monitoring in Distributed Environments</strong>: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.</p> </li> <li> <p><strong>Optimized Storage for IoT Deployments</strong>: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration