Kubernetes and MySQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin captures metrics for Kubernetes pods and containers by communicating with the Kubelet API.</p>
<p>The Telegraf SQL plugin allows you to store metrics from Telegraf directly into a MySQL database, making it easier to analyze and visualize the collected metrics.</p>
Integration details
Kubernetes
<p>The Kubernetes input plugin interfaces with the Kubelet API to gather metrics for running pods and containers on a single host, ideally as part of a daemonset in a Kubernetes installation. By operating on each node within the cluster, it collects metrics from the locally running kubelet, ensuring that the data reflects the real-time state of the environment. Being a rapidly evolving project, Kubernetes sees frequent updates, and this plugin adheres to the major cloud providers’ supported versions, maintaining compatibility across multiple releases within a limited time span. Significant consideration is given to the potential high series cardinality, which can burden the database; thus, users are advised to implement filtering techniques and retention policies to manage this load effectively. Configuration options provide flexible customization of the plugin’s behavior to integrate seamlessly into different setups, enhancing its utility in monitoring Kubernetes environments.</p>
MySQL
<p>Telegraf’s SQL output plugin is designed to seamlessly write metric data to a SQL database by dynamically creating tables and columns based on the incoming metrics. When configured for MySQL, the plugin leverages the go-sql-driver/mysql, which requires enabling the ANSI_QUOTES SQL mode to ensure proper handling of quoted identifiers. This dynamic schema creation approach ensures that each metric is stored in its own table with a structure derived from its fields and tags, providing a detailed, timestamped record of system performance. The flexibility of the plugin allows it to handle high-throughput environments, making it ideal for scenarios that demand robust, granular metric logging and historical data analysis.</p>
Configuration
Kubernetes
MySQL
Input and output integration examples
Kubernetes
<ol> <li> <p><strong>Dynamic Resource Allocation Monitoring</strong>: By utilizing the Kubernetes plugin, teams can set up alerts for resource usage patterns across various pods and containers. This proactive monitoring approach enables automatic scaling of resources in response to specific thresholds—helping to optimize performance while minimizing costs during peak usage.</p> </li> <li> <p><strong>Multi-tenancy Resource Isolation Analysis</strong>: Organizations using Kubernetes can leverage this plugin to track resource consumption per namespace. In a multi-tenant scenario, understanding the resource allocations and usages across different teams becomes critical for ensuring fair access and performance guarantees, leading to better resource management strategies.</p> </li> <li> <p><strong>Real-time Health Dashboards</strong>: Integrate the data captured by the Kubernetes plugin into visualization tools like Grafana to create real-time dashboards. These dashboards provide insights into the overall health and performance of the Kubernetes environment, allowing teams to quickly identify and rectify issues across clusters, pods, and containers.</p> </li> <li> <p><strong>Automated Incident Response Workflows</strong>: By combining the Kubernetes plugin with alert management systems, teams can automate incident response procedures based on real-time metrics. If a pod’s resource usage exceeds predefined limits, an automated workflow can trigger remediation actions, such as restarting the pod or reallocating resources—all of which can help improve system resilience.</p> </li> </ol>
MySQL
<ol> <li> <p><strong>Real-Time Web Analytics Storage</strong>: Leverage the plugin to capture website performance metrics and store them in MySQL. This setup enables teams to monitor user interactions, analyze traffic patterns, and dynamically adjust site features based on real-time data insights.</p> </li> <li> <p><strong>IoT Device Monitoring</strong>: Utilize the plugin to collect metrics from a network of IoT sensors and log them into a MySQL database. This use case supports continuous monitoring of device health and performance, allowing for predictive maintenance and immediate response to anomalies.</p> </li> <li> <p><strong>Financial Transaction Logging</strong>: Record high-frequency financial transaction data with precise timestamps. This approach supports robust audit trails, real-time fraud detection, and comprehensive historical analysis for compliance and reporting purposes.</p> </li> <li> <p><strong>Application Performance Benchmarking</strong>: Integrate the plugin with application performance monitoring systems to log metrics into MySQL. This facilitates detailed benchmarking and trend analysis over time, enabling organizations to identify performance bottlenecks and optimize resource allocation effectively.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration