MavLink and Sensu Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin collects metrics from MavLink-compatible flight controllers like ArduPilot and PX4, enabling live data ingestion from unmanned systems such as drones and boats.</p>
<p>This plugin writes metrics events to Sensu via its HTTP events API, enabling seamless integration with the Sensu monitoring platform.</p>
Integration details
MavLink
<p>The MavLink plugin is designed to gather metrics from MavLink-compatible flight controllers such as ArduPilot and PX4. It provides a mechanism to live ingest flight metrics from various unmanned systems, including drones, planes, and boats. By utilizing the ArduPilot-specific MavLink dialect, the plugin parses a wide range of messages as documented in the MavLink documentation. It enables seamless integration of telemetry data, allowing for detailed monitoring and analysis of flight operations. Users must be cautious, as this plugin may generate a substantial volume of data; thus, filters are available to limit the metrics collected and transmitted to output plugins. Additionally, configuration options allow customization of which messages to receive and how to connect to the flight controller.</p>
Sensu
<p>This plugin writes metrics events to Sensu via its HTTP events API. Sensu is a monitoring system that enables users to collect, analyze, and manage metrics from various components in their infrastructure. The plugin facilitates the integration of Telegraf, a server agent for collecting and reporting metrics, with the Sensu monitoring platform. Users can configure settings such as backend and agent API URLs, API keys for authentication, and optional TLS settings. The plugin’s core functionality is centered around sending metric events, including check and entity specifications, to Sensu, allowing for comprehensive monitoring and alerting. The API reference provides extensive details about the events and metrics structure, ensuring users can efficiently leverage Sensu’s capabilities for observability and incident response.</p>
Configuration
MavLink
Sensu
Input and output integration examples
MavLink
<ol> <li> <p><strong>Real-Time Fleet Monitoring</strong>: Utilize the MavLink plugin to create a centralized dashboard for monitoring multiple drones in real-time. By ingesting metrics from various flight controllers, operators can oversee the status, health, and location of all drones, allowing for quick decision-making and enhanced situational awareness. This integration could significantly improve coordination during large-scale operations, like aerial surveys or search and rescue missions.</p> </li> <li> <p><strong>Automated Anomaly Detection</strong>: Leverage MavLink in conjunction with machine learning algorithms to detect anomalies in flight data. By continuously monitoring metrics such as altitude, speed, and battery status, the system can alert operators to deviations from normal behavior, potentially indicating technical malfunctions or safety issues. This proactive approach can enhance safety and reduce the risk of in-flight failures.</p> </li> <li> <p><strong>Data-Driven Maintenance Scheduling</strong>: Integrate the data collected through the MavLink plugin with maintenance management systems to optimize maintenance schedules based on actual flight metrics. Analyzing the collected data can highlight patterns indicating when specific components are likely to fail, thereby enabling predictive maintenance strategies that minimize downtime and repair costs.</p> </li> <li> <p><strong>Enhanced Research Analytics</strong>: For academic and commercial UAV research, MavLink can be used to gather extensive flight data for analysis. By compiling metrics over numerous flights, researchers can uncover insights related to flight patterns, environmental interactions, and the efficiency of different drone models. This can foster advancements in UAV technology and broader applications in autonomous systems.</p> </li> </ol>
Sensu
<ol> <li> <p><strong>Real-Time Infrastructure Monitoring</strong>: Utilize the Sensu plugin to send performance metrics from various servers and services directly to Sensu. This real-time data flow enables teams to visualize infrastructure health, track resource usage, and receive immediate alerts for any anomalies detected. By centralizing monitoring through Sensu, organizations can create a holistic view of their systems and respond swiftly to issues.</p> </li> <li> <p><strong>Automated Incident Response Workflows</strong>: Leverage the plugin to automatically trigger incident response workflows based on the metrics events sent to Sensu. For example, if CPU usage exceeds a defined threshold, the Sensu system can be configured to alert the operations team, which can then initiate automated remediation processes, reducing downtime and maintaining system reliability. This integration allows for proactive management of system resources.</p> </li> <li> <p><strong>Dynamic Scaling of Resources</strong>: Use the Sensu plugin to feed metrics into an auto-scaling system that adjusts resources based on demand. By tracking metrics like request load and resource utilization, organizations can automatically scale their infrastructure up or down, ensuring optimal performance and cost efficiency without manual intervention.</p> </li> <li> <p><strong>Centralized Logging and Monitoring</strong>: Combine the Sensu with logging tools to send logs and performance metrics to a centralized monitoring system. This comprehensive approach allows teams to correlate logs with metric events, providing deeper insights into system behavior and performance, which aids in troubleshooting and performance optimization over time.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration