MavLink and AWS Timestream Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin collects metrics from MavLink-compatible flight controllers like ArduPilot and PX4, enabling live data ingestion from unmanned systems such as drones and boats.</p>
<p>The AWS Timestream Telegraf plugin enables users to send metrics directly to Amazon’s Timestream service, which is designed for time series data management. This plugin offers a variety of configuration options for authentication, data organization, and retention settings.</p> <p>With the coming End of Life of AWS Timestream for LiveAnalytics, you can easily switch to AWS Timestream for InfluxDB or other verions of InfluxDB hosted on AWS by using the <a href="https://www.influxdata.com/integrations/influxdb/">InfluxDB Telegraf plugin</a>. Learn more about <a href="https://www.influxdata.com/influxdb-cloud-on-aws/">AWS and InfluxDB</a></p>
Integration details
MavLink
<p>The MavLink plugin is designed to gather metrics from MavLink-compatible flight controllers such as ArduPilot and PX4. It provides a mechanism to live ingest flight metrics from various unmanned systems, including drones, planes, and boats. By utilizing the ArduPilot-specific MavLink dialect, the plugin parses a wide range of messages as documented in the MavLink documentation. It enables seamless integration of telemetry data, allowing for detailed monitoring and analysis of flight operations. Users must be cautious, as this plugin may generate a substantial volume of data; thus, filters are available to limit the metrics collected and transmitted to output plugins. Additionally, configuration options allow customization of which messages to receive and how to connect to the flight controller.</p>
AWS Timestream
<p>This plugin is designed to efficiently write metrics to Amazon’s Timestream for LiveAnalytics service. With AWS no longer accepting new users for their LiveAnalytics service, consider using the <a href="https://www.influxdata.com/integrations/influxdb/">InfluxDB plugin</a> with AWS Timestream for InfluxDB or other <a href="https://www.influxdata.com/influxdb-cloud-on-aws/">InfluxDB options available on AWS</a>. This plugin Telegraf can send data collected from various sources and supports a flexible configuration for authentication, data organization, and retention management. It utilizes a credential chain for authentication, allowing various methods such as web identity, assumed roles, and shared profiles. Users can define how metrics are organized in Timestream—whether to use a single table or multiple tables, alongside control over aspect such as retention periods for both magnetic and memory stores. A key feature is its ability to handle multi-measure records, enabling efficient data ingestion and helping to reduce the overhead of multiple writes. In terms of error handling, the plugin includes mechanisms for addressing common issues related to AWS errors during data writes, such as retry logic for throttling and the ability to create tables as needed.</p>
Configuration
MavLink
AWS Timestream
Input and output integration examples
MavLink
<ol> <li> <p><strong>Real-Time Fleet Monitoring</strong>: Utilize the MavLink plugin to create a centralized dashboard for monitoring multiple drones in real-time. By ingesting metrics from various flight controllers, operators can oversee the status, health, and location of all drones, allowing for quick decision-making and enhanced situational awareness. This integration could significantly improve coordination during large-scale operations, like aerial surveys or search and rescue missions.</p> </li> <li> <p><strong>Automated Anomaly Detection</strong>: Leverage MavLink in conjunction with machine learning algorithms to detect anomalies in flight data. By continuously monitoring metrics such as altitude, speed, and battery status, the system can alert operators to deviations from normal behavior, potentially indicating technical malfunctions or safety issues. This proactive approach can enhance safety and reduce the risk of in-flight failures.</p> </li> <li> <p><strong>Data-Driven Maintenance Scheduling</strong>: Integrate the data collected through the MavLink plugin with maintenance management systems to optimize maintenance schedules based on actual flight metrics. Analyzing the collected data can highlight patterns indicating when specific components are likely to fail, thereby enabling predictive maintenance strategies that minimize downtime and repair costs.</p> </li> <li> <p><strong>Enhanced Research Analytics</strong>: For academic and commercial UAV research, MavLink can be used to gather extensive flight data for analysis. By compiling metrics over numerous flights, researchers can uncover insights related to flight patterns, environmental interactions, and the efficiency of different drone models. This can foster advancements in UAV technology and broader applications in autonomous systems.</p> </li> </ol>
AWS Timestream
<ol> <li> <p><strong>IoT Data Metrics</strong>: Use the Timestream plugin to send real-time metrics from IoT devices to Timestream, allowing for quick analysis and visualization of sensor data. By organizing device readings into a time series format, users can track trends, identify anomalies, and streamline operational decisions based on device performance.</p> </li> <li> <p><strong>Application Performance Monitoring</strong>: Leverage Timestream alongside application monitoring tools to send metrics about service performance over time. This integration enables engineers to perform historical analysis of application performance, correlate it with business metrics, and optimize resource allocation based on usage patterns viewed over time.</p> </li> <li> <p><strong>Automated Data Archiving</strong>: Configure the Timestream plugin to write data to Timestream while simultaneously managing retention periods. This setup can automate archiving strategies, ensuring that older data is preserved according to predefined criteria. This is especially useful for compliance and historical analysis, allowing businesses to maintain their data lifecycle with minimal manual intervention.</p> </li> <li> <p><strong>Multi-Application Metrics Aggregation</strong>: Utilize the Timestream plugin to aggregate metrics from multiple applications into Timestream. By creating a unified database of performance metrics, organizations can gain holistic insights across various services, improving visibility into system-wide performance and facilitating cross-application troubleshooting.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration