Mesos and PostgreSQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This input plugin gathers metrics from Mesos.</p>
<p>The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.</p>
Integration details
Mesos
<p>The Mesos plugin for Telegraf is designed to collect and report metrics from Apache Mesos clusters, which is essential for monitoring and observability in container orchestration and resource management. Mesos, known for its scalability and ability to manage diverse workloads, generates various metrics about resource usage, tasks, frameworks, and overall system performance. By utilizing this plugin, users can track the health and efficiency of their Mesos clusters, gather insights into resource distribution, and ensure that applications receive the necessary resources in a timely manner. The configuration allows users to specify the relevant Mesos master’s details, along with the desired metric groups to collect, making it adaptable to different deployments and monitoring needs. Overall, this plugin integrates seamlessly within the Telegraf collection pipeline, supporting detailed observability for cloud-native environments.</p>
PostgreSQL
<p>The PostgreSQL plugin enables users to write metrics to a PostgreSQL database or a compatible database, providing robust support for schema management by automatically updating missing columns. The plugin is designed to facilitate integration with monitoring solutions, allowing users to efficiently store and manage time series data. It offers configurable options for connection settings, concurrency, and error handling, and supports advanced features such as JSONB storage for tags and fields, foreign key tagging, templated schema modifications, and support for unsigned integer data types through the pguint extension.</p>
Configuration
Mesos
PostgreSQL
Input and output integration examples
Mesos
<ol> <li> <p><strong>Resource Utilization Monitoring</strong>: Use the Mesos plugin to continually monitor CPU, memory, and disk usage across your Mesos cluster. For a rapidly scaling application, tracking these metrics helps ensure that resources are dynamically allocated according to workloads, preventing bottlenecks and optimizing performance.</p> </li> <li> <p><strong>Framework Performance Analysis</strong>: Integrate this plugin to measure the performance of different frameworks running on Mesos. By comparing active frameworks and their task success rates, you can identify which frameworks provide the best resource efficiency or may require optimization.</p> </li> <li> <p><strong>Alerts for System Health</strong>: Set up alerts based on metrics collected by the Mesos plugin to notify engineering teams when resource utilization exceeds key thresholds or when specific tasks fail. This allows for proactive intervention and maintenance before critical failures occur.</p> </li> <li> <p><strong>Capacity Planning</strong>: Utilize gathered metrics to analyze historical resource usage patterns to assist in capacity planning. By understanding peak loads and resource utilization trends, teams can make informed decisions on scaling infrastructure and deploying additional resources as needed.</p> </li> </ol>
PostgreSQL
<ol> <li> <p><strong>Real-Time Analytics with Complex Queries</strong>: Leverage the PostgreSQL plugin to store metrics from various sources in a PostgreSQL database, enabling real-time analytics using complex queries. This setup can help data scientists and analysts uncover patterns and trends, as they manipulate relational data across multiple tables while utilizing PostgreSQL’s robust query optimization features. Specifically, users can create sophisticated reports with JOIN operations across different metric tables, revealing insights that would typically remain hidden in embedded systems.</p> </li> <li> <p><strong>Integrating with TimescaleDB for Time-Series Data</strong>: Utilize the PostgreSQL plugin within a TimescaleDB instance to efficiently handle and analyze time-series data. By implementing hypertables, users can achieve greater performance and partitioning of topics over the time dimension. This integration allows users to run analytical queries over large amounts of time-series data while retaining the full power of PostgreSQL’s SQL queries, ensuring reliability and efficiency in metrics analysis.</p> </li> <li> <p><strong>Data Versioning and Historical Analysis</strong>: Implement a strategy using the PostgreSQL plugin to maintain different versions of metrics over time. Users can set up an immutable data table structure where older versions of tables are retained, enabling easy historical analysis. This approach not only provides insights into data evolution but also aids compliance with data retention policies, ensuring that the historical integrity of the datasets remains intact.</p> </li> <li> <p><strong>Dynamic Schema Management for Evolving Metrics</strong>: Use the plugin’s templating capabilities to create a dynamically changing schema that responds to metric variations. This use case allows organizations to adapt their data structure as metrics evolve, adding necessary fields and ensuring adherence to data integrity policies. By leveraging templated SQL commands, users can extend their database without manual intervention, facilitating agile data management practices.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration