NSQ and Azure Data Explorer Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The NSQ Telegraf plugin reads metrics from the NSQD messaging system, allowing for real-time data processing and monitoring.</p>
<p>The Azure Data Explorer plugin allows integration of metrics collection with Azure Data Explorer, enabling users to analyze and query their telemetry data efficiently. With this plugin, users can configure ingestion settings to suit their needs and leverage Azure’s powerful analytical capabilities.</p>
Integration details
NSQ
<p>The NSQ plugin interfaces with NSQ, a real-time messaging platform, enabling the reading of messages from NSQD. This plugin is categorized as a service plugin, meaning it actively listens for metrics and events rather than polling them at regular intervals. With an emphasis on reliability, it prevents data loss by tracking undelivered messages until they are acknowledged by outputs. The plugin allows for configurations such as specifying NSQLookupd endpoints, topics, and channels, and it supports multiple data formats for flexibility in data handling.</p>
Azure Data Explorer
<p>The Azure Data Explorer plugin allows users to write metrics, logs, and time series data collected from various Telegraf input plugins into Azure Data Explorer, Azure Synapse, and Real-Time Analytics in Fabric. This integration serves as a bridge, allowing applications and services to monitor their performance metrics or logs efficiently. Azure Data Explorer is optimized for analytics over large volumes of diverse data types, making it an excellent choice for real-time analytics and monitoring solutions in cloud environments. The plugin empowers users to configure metrics ingestion based on their requirements, define table schemas dynamically, and set various ingestion methods while retaining flexibility regarding roles and permissions needed for database operations. This supports scalable and secure monitoring setups for modern applications that utilize cloud services.</p>
Configuration
NSQ
Azure Data Explorer
Input and output integration examples
NSQ
<ol> <li> <p><strong>Real-Time Analytics Dashboard</strong>: Integrate this plugin with a visualization tool to create a dashboard that displays real-time metrics from various topics in NSQ. By subscribing to specific topics, users can monitor system health and application performance dynamically, allowing for immediate insights and timely responses to any anomalies.</p> </li> <li> <p><strong>Event-Driven Automation</strong>: Combine NSQ with a serverless architecture to trigger automated workflows based on incoming messages. This use case could involve processing data for machine learning models or responding to user actions in applications, thus streamlining operations and enhancing user experience through rapid processing.</p> </li> <li> <p><strong>Multi-Service Communication Hub</strong>: Use the NSQ plugin to act as a centralized messaging hub among different microservices in a distributed architecture. By enabling services to communicate through NSQ, developers can ensure reliable message delivery while maintaining decoupled service interactions, significantly improving scalability and resilience.</p> </li> <li> <p><strong>Metrics Aggregation for Enhanced Monitoring</strong>: Implement the NSQ plugin to aggregate metrics from multiple sources before sending them to an analytics tool. This setup enables businesses to consolidate data from various applications and services, creating a unified view for better decision-making and strategic planning.</p> </li> </ol>
Azure Data Explorer
<ol> <li> <p><strong>Real-Time Monitoring Dashboard</strong>: By integrating metrics from various services into Azure Data Explorer using this plugin, organizations can build comprehensive dashboards that reflect real-time performance metrics. This allows teams to respond proactively to performance issues and optimize system health without delay.</p> </li> <li> <p><strong>Centralized Log Management</strong>: Utilize Azure Data Explorer to consolidate logs from multiple applications and services. By utilizing the plugin, organizations can streamline their log analysis processes, making it easier to search, filter, and derive insights from historical data accumulated over time.</p> </li> <li> <p><strong>Data-Driven Alerting Systems</strong>: Enhance monitoring capabilities by configuring alerts based on metrics sent via this plugin. Organizations can set thresholds and automate incident responses, significantly reducing downtime and improving the reliability of critical operations.</p> </li> <li> <p><strong>Machine Learning Model Training</strong>: By leveraging the data sent to Azure Data Explorer, organizations can perform large-scale analytics and prepare the data for feeding into machine learning models. This plugin enables the structuring of data that can subsequently be used for predictive analytics, leading to enhanced decision-making capabilities.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration