ntpq and Graphite Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The ntpq plugin collects standard metrics related to the Network Time Protocol (NTP) by executing the ntpq command. It gathers essential information about the synchronization state of the local machine with remote NTP servers, providing valuable insights into timekeeping accuracy and network performance.</p>
<p>The Graphite plugin enables users to send metrics collected by Telegraf into Graphite via TCP. This integration allows for efficient storage and visualization of time-series data using Graphite’s powerful capabilities.</p>
Integration details
ntpq
<p>The ntpq Telegraf plugin provides a way to gather metrics from the Network Time Protocol (NTP) by querying the NTP server using the <code>ntpq</code> executable. This plugin collects a variety of metrics related to the synchronization status with remote NTP servers, including delay, jitter, offset, polling frequency, and reachability. These metrics are crucial for understanding the performance and reliability of time synchronization efforts in systems that rely on accurate timekeeping. NTP plays a vital role in networked environments, enabling synchronized clocks across devices which is essential for logging, coordination of activities, and security protocols. Through this plugin, users can monitor the effectiveness of their time synchronization processes, making it easier to identify issues related to network delays or misconfigurations, thus ensuring that systems remain in sync and operate efficiently.</p>
Graphite
<p>This plugin writes metrics to Graphite via raw TCP, allowing for seamless integration of Telegraf collected metrics into the Graphite ecosystem. With this plugin, users can configure multiple TCP endpoints for load balancing, ensuring high availability and reliability in metric transmission. The ability to customize metric naming with prefixes and utilize various templating options enhances flexibility in how data is represented within Graphite. Additionally, support for Graphite tags and options for strict sanitization of metric names allow for robust data management, catering to the varying needs of users. This capability is essential for organizations looking to leverage Graphite’s powerful metrics storage and visualization while maintaining control over data representation.</p>
Configuration
ntpq
Graphite
Input and output integration examples
ntpq
<ol> <li> <p><strong>Network Time Monitoring Dashboard</strong>: Utilize the ntpq plugin to create a centralized monitoring dashboard for tracking the reliability and performance of network time synchronization across multiple servers. By visualizing metrics such as delay and jitter, system administrators can quickly identify which servers are providing accurate time versus those with significant latency issues, ensuring that all systems remain synchronized effectively.</p> </li> <li> <p><strong>Automated Alert System for Time Drift</strong>: Implement an automated alert system that leverages ntpq metrics to notify operations teams when time drift exceeds acceptable thresholds. By analyzing the offset and jitter values, the system can trigger alerts if any remote NTP server is out of sync, allowing for swift remediation actions to maintain time accuracy across critical infrastructure.</p> </li> <li> <p><strong>Comparative Analysis of Time Sources</strong>: Use the ntpq plugin to perform a comparative analysis of different NTP servers over time. By querying multiple NTP sources and monitoring their metrics, organizations can evaluate the performance and reliability of their time sources, making informed decisions about which NTP servers to configure as primary or secondary in their environments.</p> </li> <li> <p><strong>Historical Performance Tracking for NTP</strong>: Gather historical performance data on various NTP servers using the ntpq plugin, enabling long-term trend analysis for timekeeping accuracy. This can help organizations identify patterns or recurring issues related to specific servers, informing future decisions about infrastructure changes or adjustments related to time synchronization strategies.</p> </li> </ol>
Graphite
<ol> <li> <p><strong>Dynamic Metric Visualization</strong>: The Graphite plugin can be utilized to feed real-time metrics from various sources, such as application performance data or server health metrics, into Graphite. This dynamic integration allows teams to create interactive dashboards that visualize key performance indicators, track trends over time, and make data-driven decisions to enhance system performance.</p> </li> <li> <p><strong>Load Balanced Metrics Collection</strong>: By configuring multiple TCP endpoints within the plugin, organizations can implement load balancing for metric transmission. This use case ensures that metric delivery is both resilient and efficient, reducing the risk of data loss during high-traffic periods and maintaining a reliable flow of information to Graphite.</p> </li> <li> <p><strong>Customized Metrics Tagging</strong>: With support for Graphite tags, users can employ the Graphite plugin to enhance the granularity of their metrics. Tagging metrics with relevant information, such as application environment or service type, allows for more refined queries and analytics, enabling teams to drill down into specific areas of interest for better operational insights.</p> </li> <li> <p><strong>Enhanced Data Sanitization</strong>: Leveraging the plugin’s strict sanitization options, users can ensure that their metric names comply with Graphite’s requirements. This proactive measure eliminates potential issues arising from invalid characters in metric names, allowing for cleaner data management and more accurate visualizations.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration