SNMP and TimescaleDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The SNMP plugin allows you to collect a variety of metrics from SNMP (Simple Network Management Protocol) agents. It provides flexibility in how data is retrieved, whether collecting single metrics or entire tables.</p>
<p>This output plugin delivers a reliable and efficient mechanism for routing Telegraf collected metrics directly into TimescaleDB. By leveraging PostgreSQL’s robust ecosystem combined with TimescaleDB’s time series optimizations, it supports high-performance data ingestion and advanced querying capabilities.</p>
Integration details
SNMP
<p>This plugin uses polling to gather metrics from SNMP agents, supporting retrieval of individual OIDs and complete SNMP tables. It can be configured to handle multiple SNMP versions, authentication, and other features.</p>
TimescaleDB
<p>TimescaleDB is an open source time series database built as an extension to PostgreSQL, designed to handle large scale, time-oriented data efficiently. Launched in 2017, TimescaleDB emerged in response to the growing need for a robust, scalable solution that could manage vast volumes of data with high insert rates and complex queries. By leveraging PostgreSQL’s familiar SQL interface and enhancing it with specialized time series capabilities, TimescaleDB quickly gained popularity among developers looking to integrate time series functionality into existing relational databases. Its hybrid approach allows users to benefit from PostgreSQL’s flexibility, reliability, and ecosystem while providing optimized performance for time series data.</p> <p>The database is particularly effective in environments that demand fast ingestion of data points combined with sophisticated analytical queries over historical periods. TimescaleDB has a number of innovative features like hypertables which transparently partition data into manageable chunks and built-in continuous aggregation. These allow for significantly improved query speed and resource efficiency.</p>
Configuration
SNMP
TimescaleDB
Input and output integration examples
SNMP
<ol> <li><strong>Basic SNMP Configuration</strong>: Collect metrics from a local SNMP agent using typical SNMP community string settings. This setup is ideal for local monitoring of device performance.</li> <li><strong>Advanced SNMPv3 Setup</strong>: Securely collect metrics using SNMPv3 with authentication and encryption to enhance security. This configuration is recommended for production environments.</li> <li><strong>Collect Interface Metrics</strong>: Configure the plugin to collect interface metrics from the device’s SNMP table. Utilize fields to capture specific data points for traffic analysis.</li> <li><strong>Join Two SNMP Tables</strong>: By using translation fields, join data from two SNMP tables for a comprehensive view of correlated performance metrics.</li> </ol>
TimescaleDB
<ol> <li> <p><strong>Real-Time IoT Data Ingestion</strong>: Use the plugin to collect and store sensor data from thousands of IoT devices in real time. This setup facilitates immediate analysis, helping organizations monitor operational efficiency and respond quickly to changing conditions.</p> </li> <li> <p><strong>Cloud Application Performance Monitoring</strong>: Leverage the plugin to feed detailed performance metrics from distributed cloud applications into TimescaleDB. This integration supports real-time dashboards and alerts, enabling teams to swiftly identify and mitigate performance bottlenecks.</p> </li> <li> <p><strong>Historical Data Analysis and Reporting</strong>: Implement a system where long-term metrics are stored in TimescaleDB for comprehensive historical analysis. This approach allows businesses to perform trend analysis, generate detailed reports, and make data-driven decisions based on archived time-series data.</p> </li> <li> <p><strong>Adaptive Alerting and Anomaly Detection</strong>: Integrate the plugin with automated anomaly detection workflows. By continuously streaming metrics to TimescaleDB, machine learning models can analyze data patterns and trigger alerts when anomalies occur, enhancing system reliability and proactive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration