Google Cloud Stackdriver and Clickhouse Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin enables the collection of monitoring data from Google Cloud services through the Stackdriver Monitoring API. It is designed to help users monitor their cloud infrastructure’s performance and health by gathering relevant metrics.</p>
<p>Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.</p>
Integration details
Google Cloud Stackdriver
<p>The Stackdriver Telegraf plugin allows users to query timeseries data from Google Cloud Monitoring using the Cloud Monitoring API v3. With this plugin, users can easily integrate Google Cloud monitoring metrics into their monitoring stacks. This API provides a wealth of insights about resources and applications running in Google Cloud, including performance, uptime, and operational metrics. The plugin supports various configuration options to filter and refine the data retrieved, enabling users to customize their monitoring setup according to their specific needs. This integration facilitates a smoother experience in maintaining the health and performance of cloud resources and assists teams in making data-driven decisions based on historical and current performance statistics.</p>
Clickhouse
<p>Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.</p>
Configuration
Google Cloud Stackdriver
Clickhouse
Input and output integration examples
Google Cloud Stackdriver
<ol> <li> <p><strong>Integrating Cloud Metrics into Custom Dashboards</strong>: With this plugin, teams can funnel metrics from Google Cloud into personalized dashboards, allowing for real-time monitoring of application performance and resource utilization. By customizing the visual representation of cloud metrics, operations teams can easily identify trends and anomalies, enabling proactive management before issues escalate.</p> </li> <li> <p><strong>Automated Alerts and Analysis</strong>: Users can set up automated alerting mechanisms leveraging the plugin’s metrics to track resource thresholds. This capability allows teams to act swiftly in response to performance degradation or outages by providing immediate notifications, thus reducing the mean time to recovery and ensuring continued operational efficiency.</p> </li> <li> <p><strong>Cross-Platform Resource Comparison</strong>: The plugin can be used to draw metrics from various Google Cloud services and compare them with on-premise resources. This cross-platform visibility helps organizations make informed decisions about resource allocation and scaling strategies, as well as optimize cloud spending versus on-premise infrastructure.</p> </li> <li> <p><strong>Historical Data Analysis for Capacity Planning</strong>: By collecting historical metrics over time, the plugin empowers teams to conduct thorough capacity planning. Understanding past performance trends facilitates accurate forecasting for resource needs, leading to better budgeting and investment strategies.</p> </li> </ol>
Clickhouse
<ol> <li> <p><strong>Real-Time Analytics for High-Volume Data</strong>: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.</p> </li> <li> <p><strong>Time-Series Data Warehousing</strong>: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.</p> </li> <li> <p><strong>Scalable Monitoring in Distributed Environments</strong>: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.</p> </li> <li> <p><strong>Optimized Storage for IoT Deployments</strong>: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration