Google Cloud Stackdriver and Librato Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin enables the collection of monitoring data from Google Cloud services through the Stackdriver Monitoring API. It is designed to help users monitor their cloud infrastructure’s performance and health by gathering relevant metrics.</p>
<p>The Librato plugin for Telegraf is designed to facilitate seamless integration with the Librato Metrics API, allowing for efficient metric reporting and monitoring.</p>
Integration details
Google Cloud Stackdriver
<p>The Stackdriver Telegraf plugin allows users to query timeseries data from Google Cloud Monitoring using the Cloud Monitoring API v3. With this plugin, users can easily integrate Google Cloud monitoring metrics into their monitoring stacks. This API provides a wealth of insights about resources and applications running in Google Cloud, including performance, uptime, and operational metrics. The plugin supports various configuration options to filter and refine the data retrieved, enabling users to customize their monitoring setup according to their specific needs. This integration facilitates a smoother experience in maintaining the health and performance of cloud resources and assists teams in making data-driven decisions based on historical and current performance statistics.</p>
Librato
<p>The Librato plugin enables Telegraf to send metrics to the Librato Metrics API. To authenticate, users must provide an <code>api_user</code> and <code>api_token</code>, which can be acquired from the Librato account settings. This integration allows for efficient monitoring and reporting of custom metrics within the Librato platform. The plugin also utilizes a <code>source_tag</code> option that can enrich the metrics with contextual information from Point Tags; however, it does not currently support sending associated Point Tags. It is essential to note that any point value sent that cannot be converted to a float64 type will be skipped, ensuring that only valid metrics are processed and sent to Librato. The plugin also supports secret-store options for managing sensitive authentication credentials securely, facilitating best practices in credential management.</p>
Configuration
Google Cloud Stackdriver
Librato
Input and output integration examples
Google Cloud Stackdriver
<ol> <li> <p><strong>Integrating Cloud Metrics into Custom Dashboards</strong>: With this plugin, teams can funnel metrics from Google Cloud into personalized dashboards, allowing for real-time monitoring of application performance and resource utilization. By customizing the visual representation of cloud metrics, operations teams can easily identify trends and anomalies, enabling proactive management before issues escalate.</p> </li> <li> <p><strong>Automated Alerts and Analysis</strong>: Users can set up automated alerting mechanisms leveraging the plugin’s metrics to track resource thresholds. This capability allows teams to act swiftly in response to performance degradation or outages by providing immediate notifications, thus reducing the mean time to recovery and ensuring continued operational efficiency.</p> </li> <li> <p><strong>Cross-Platform Resource Comparison</strong>: The plugin can be used to draw metrics from various Google Cloud services and compare them with on-premise resources. This cross-platform visibility helps organizations make informed decisions about resource allocation and scaling strategies, as well as optimize cloud spending versus on-premise infrastructure.</p> </li> <li> <p><strong>Historical Data Analysis for Capacity Planning</strong>: By collecting historical metrics over time, the plugin empowers teams to conduct thorough capacity planning. Understanding past performance trends facilitates accurate forecasting for resource needs, leading to better budgeting and investment strategies.</p> </li> </ol>
Librato
<ol> <li> <p><strong>Real-time Application Monitoring</strong>: Utilize Librato to collect performance metrics from a web application in real-time. This setup involves sending response times, error rates, and user interactions to Librato, allowing developers to monitor the application’s health and performance metrics closely. By analyzing these metrics, teams can quickly identify and address performance bottlenecks or application failures before they impact end users.</p> </li> <li> <p><strong>Infrastructure Metrics Aggregation</strong>: Leverage this plugin to gather and send metrics from various infrastructure components, such as servers or containers, to Librato for centralized monitoring. Configuring the plugin to send CPU, memory usage, and disk I/O metrics enables system administrators to have a comprehensive view of infrastructure performance, assisting in capacity planning and resource optimization strategies.</p> </li> <li> <p><strong>Custom Metrics for Business Operations</strong>: Feed business-specific metrics, such as sales transactions or user sign-ups, to the Librato service using this plugin. By tracking these custom metrics, businesses can gain insights into their operational performance and make data-driven decisions to enhance their strategies, marketing efforts, or product development initiatives.</p> </li> <li> <p><strong>Anomaly Detection in Metrics</strong>: Implement monitoring tools that utilize machine learning for anomaly detection. By continuously sending real-time metrics to Librato, teams can analyze trends and automatically flag unusual behavior, such as sudden spikes in latency or unusual traffic patterns, enabling timely intervention and troubleshooting.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration