Google Cloud Stackdriver and PostgreSQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin enables the collection of monitoring data from Google Cloud services through the Stackdriver Monitoring API. It is designed to help users monitor their cloud infrastructure’s performance and health by gathering relevant metrics.</p>
<p>The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.</p>
Integration details
Google Cloud Stackdriver
<p>The Stackdriver Telegraf plugin allows users to query timeseries data from Google Cloud Monitoring using the Cloud Monitoring API v3. With this plugin, users can easily integrate Google Cloud monitoring metrics into their monitoring stacks. This API provides a wealth of insights about resources and applications running in Google Cloud, including performance, uptime, and operational metrics. The plugin supports various configuration options to filter and refine the data retrieved, enabling users to customize their monitoring setup according to their specific needs. This integration facilitates a smoother experience in maintaining the health and performance of cloud resources and assists teams in making data-driven decisions based on historical and current performance statistics.</p>
PostgreSQL
<p>The PostgreSQL plugin enables users to write metrics to a PostgreSQL database or a compatible database, providing robust support for schema management by automatically updating missing columns. The plugin is designed to facilitate integration with monitoring solutions, allowing users to efficiently store and manage time series data. It offers configurable options for connection settings, concurrency, and error handling, and supports advanced features such as JSONB storage for tags and fields, foreign key tagging, templated schema modifications, and support for unsigned integer data types through the pguint extension.</p>
Configuration
Google Cloud Stackdriver
PostgreSQL
Input and output integration examples
Google Cloud Stackdriver
<ol> <li> <p><strong>Integrating Cloud Metrics into Custom Dashboards</strong>: With this plugin, teams can funnel metrics from Google Cloud into personalized dashboards, allowing for real-time monitoring of application performance and resource utilization. By customizing the visual representation of cloud metrics, operations teams can easily identify trends and anomalies, enabling proactive management before issues escalate.</p> </li> <li> <p><strong>Automated Alerts and Analysis</strong>: Users can set up automated alerting mechanisms leveraging the plugin’s metrics to track resource thresholds. This capability allows teams to act swiftly in response to performance degradation or outages by providing immediate notifications, thus reducing the mean time to recovery and ensuring continued operational efficiency.</p> </li> <li> <p><strong>Cross-Platform Resource Comparison</strong>: The plugin can be used to draw metrics from various Google Cloud services and compare them with on-premise resources. This cross-platform visibility helps organizations make informed decisions about resource allocation and scaling strategies, as well as optimize cloud spending versus on-premise infrastructure.</p> </li> <li> <p><strong>Historical Data Analysis for Capacity Planning</strong>: By collecting historical metrics over time, the plugin empowers teams to conduct thorough capacity planning. Understanding past performance trends facilitates accurate forecasting for resource needs, leading to better budgeting and investment strategies.</p> </li> </ol>
PostgreSQL
<ol> <li> <p><strong>Real-Time Analytics with Complex Queries</strong>: Leverage the PostgreSQL plugin to store metrics from various sources in a PostgreSQL database, enabling real-time analytics using complex queries. This setup can help data scientists and analysts uncover patterns and trends, as they manipulate relational data across multiple tables while utilizing PostgreSQL’s robust query optimization features. Specifically, users can create sophisticated reports with JOIN operations across different metric tables, revealing insights that would typically remain hidden in embedded systems.</p> </li> <li> <p><strong>Integrating with TimescaleDB for Time-Series Data</strong>: Utilize the PostgreSQL plugin within a TimescaleDB instance to efficiently handle and analyze time-series data. By implementing hypertables, users can achieve greater performance and partitioning of topics over the time dimension. This integration allows users to run analytical queries over large amounts of time-series data while retaining the full power of PostgreSQL’s SQL queries, ensuring reliability and efficiency in metrics analysis.</p> </li> <li> <p><strong>Data Versioning and Historical Analysis</strong>: Implement a strategy using the PostgreSQL plugin to maintain different versions of metrics over time. Users can set up an immutable data table structure where older versions of tables are retained, enabling easy historical analysis. This approach not only provides insights into data evolution but also aids compliance with data retention policies, ensuring that the historical integrity of the datasets remains intact.</p> </li> <li> <p><strong>Dynamic Schema Management for Evolving Metrics</strong>: Use the plugin’s templating capabilities to create a dynamically changing schema that responds to metric variations. This use case allows organizations to adapt their data structure as metrics evolve, adding necessary fields and ensuring adherence to data integrity policies. By leveraging templated SQL commands, users can extend their database without manual intervention, facilitating agile data management practices.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration