StatsD and AWS Redshift Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The StatsD input plugin captures metrics from a StatsD server by running a listener service in the background, allowing for comprehensive performance monitoring and metric aggregation.</p>
<p>This plugin enables Telegraf to send metrics to Amazon Redshift using the PostgreSQL plugin, allowing metrics to be stored in a scalable, SQL-compatible data warehouse.</p>
Integration details
StatsD
<p>The StatsD input plugin is designed to gather metrics from a StatsD server by running a backgrounded StatsD listener service while Telegraf is active. This plugin leverages the format of the StatsD messages as established by the original Etsy implementation, which allows for various types of metrics including gauges, counters, sets, timings, histograms, and distributions. The capabilities of the StatsD plugin extend to parsing tags and extending the standard protocol with features that accommodate InfluxDB’s tagging system. It can handle messages sent via different protocols (UDP or TCP), manage multiple metric metrics effectively, and offers advanced configurations for optimal metric handling such as percentiles calculation and data transformation templates. This flexibility empowers users to track application performance comprehensively, making it an essential tool for robust monitoring setups.</p>
AWS Redshift
<p>This configuration uses the Telegraf PostgreSQL plugin to send metrics to Amazon Redshift, AWS’s fully managed cloud data warehouse that supports SQL-based analytics at scale. Although Redshift is based on PostgreSQL 8.0.2, it does not support all standard PostgreSQL features such as full JSONB, stored procedures, or upserts. Therefore, care must be taken to predefine compatible tables and schema when using Telegraf for Redshift integration. This setup is ideal for use cases that benefit from long-term, high-volume metric storage and integration with AWS analytics tools like QuickSight or Redshift Spectrum. Metrics stored in Redshift can be joined with business datasets for rich observability and BI analysis.</p>
Configuration
StatsD
AWS Redshift
Input and output integration examples
StatsD
<ol> <li> <p><strong>Real-time Application Performance Monitoring</strong>: Utilize the StatsD input plugin to monitor application performance metrics in real-time. By configuring your application to send various metrics to a StatsD server, teams can leverage this plugin to analyze performance bottlenecks, track user activity, and ensure resource optimization dynamically. The combination of historical and real-time metrics allows for proactive troubleshooting and enhances the responsiveness of issue resolution processes.</p> </li> <li> <p><strong>Tracking User Engagement Metrics in Web Applications</strong>: Use the StatsD plugin to gather user engagement statistics, such as page views, click events, and interaction times. By sending these metrics to the StatsD server, businesses can derive valuable insights into user behavior, enabling them to make data-driven decisions to improve user experience and interface design based on quantitative feedback. This can significantly enhance the effectiveness of marketing strategies and product development efforts.</p> </li> <li> <p><strong>Infrastructure Health Monitoring</strong>: Deploy the StatsD plugin to monitor the health of your server infrastructure by tracking metrics such as resource utilization, server response times, and network performance. With this setup, DevOps teams can gain detailed visibility into system performance, effectively anticipating issues before they escalate. This enables a proactive approach to infrastructure management, minimizing downtimes and ensuring optimal service delivery.</p> </li> <li> <p><strong>Creating Comprehensive Service Dashboards</strong>: Integrate StatsD with visualization tools to create comprehensive dashboards that reflect the status and health of services across an architecture. For instance, combining data from multiple services logged through StatsD can transform raw metrics into actionable insights, showcasing system performance trends over time. This capability empowers stakeholders to maintain oversight and drive decisions based on visualized data sets, enhancing overall operational transparency.</p> </li> </ol>
AWS Redshift
<ol> <li> <p><strong>Business-Aware Infrastructure Monitoring</strong>: Store infrastructure metrics from Telegraf in Redshift alongside sales, marketing, or customer engagement data. Analysts can correlate system performance with business KPIs using SQL joins and window functions.</p> </li> <li> <p><strong>Historical Trend Analysis for Cloud Resources</strong>: Use Telegraf to continuously log CPU, memory, and I/O metrics to Redshift. Combine with time-series SQL queries and visualization tools like Amazon QuickSight to spot trends and forecast resource demand.</p> </li> <li> <p><strong>Security Auditing of System Behavior</strong>: Send metrics related to system logins, file changes, or resource spikes into Redshift. Analysts can build dashboards or reports for compliance auditing using SQL queries across multi-year data sets.</p> </li> <li> <p><strong>Cross-Environment SLA Reporting</strong>: Aggregate SLA metrics from multiple cloud accounts and regions using Telegraf, and push them to a central Redshift warehouse. Enable unified SLA compliance dashboards and executive reporting via a single SQL interface.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration