StatsD and Loki Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The StatsD input plugin captures metrics from a StatsD server by running a listener service in the background, allowing for comprehensive performance monitoring and metric aggregation.</p>
<p>The Loki plugin allows users to send logs to Loki for aggregation and querying, leveraging Loki’s efficient storage capabilities.</p>
Integration details
StatsD
<p>The StatsD input plugin is designed to gather metrics from a StatsD server by running a backgrounded StatsD listener service while Telegraf is active. This plugin leverages the format of the StatsD messages as established by the original Etsy implementation, which allows for various types of metrics including gauges, counters, sets, timings, histograms, and distributions. The capabilities of the StatsD plugin extend to parsing tags and extending the standard protocol with features that accommodate InfluxDB’s tagging system. It can handle messages sent via different protocols (UDP or TCP), manage multiple metric metrics effectively, and offers advanced configurations for optimal metric handling such as percentiles calculation and data transformation templates. This flexibility empowers users to track application performance comprehensively, making it an essential tool for robust monitoring setups.</p>
Loki
<p>This Loki plugin integrates with Grafana Loki, a powerful log aggregation system. By sending logs in a format compatible with Loki, this plugin allows for efficient storage and querying of logs. Each log entry is structured in a key-value format where keys represent the field names and values represent the corresponding log information. The sorting of logs by timestamp ensures that the log streams maintain chronological order when queried through Loki. This plugin’s support for secrets makes it easier to manage authentication parameters securely, while options for HTTP headers, gzip encoding, and TLS configuration enhance the adaptability and security of log transmission, fitting various deployment needs.</p>
Configuration
StatsD
Loki
Input and output integration examples
StatsD
<ol> <li> <p><strong>Real-time Application Performance Monitoring</strong>: Utilize the StatsD input plugin to monitor application performance metrics in real-time. By configuring your application to send various metrics to a StatsD server, teams can leverage this plugin to analyze performance bottlenecks, track user activity, and ensure resource optimization dynamically. The combination of historical and real-time metrics allows for proactive troubleshooting and enhances the responsiveness of issue resolution processes.</p> </li> <li> <p><strong>Tracking User Engagement Metrics in Web Applications</strong>: Use the StatsD plugin to gather user engagement statistics, such as page views, click events, and interaction times. By sending these metrics to the StatsD server, businesses can derive valuable insights into user behavior, enabling them to make data-driven decisions to improve user experience and interface design based on quantitative feedback. This can significantly enhance the effectiveness of marketing strategies and product development efforts.</p> </li> <li> <p><strong>Infrastructure Health Monitoring</strong>: Deploy the StatsD plugin to monitor the health of your server infrastructure by tracking metrics such as resource utilization, server response times, and network performance. With this setup, DevOps teams can gain detailed visibility into system performance, effectively anticipating issues before they escalate. This enables a proactive approach to infrastructure management, minimizing downtimes and ensuring optimal service delivery.</p> </li> <li> <p><strong>Creating Comprehensive Service Dashboards</strong>: Integrate StatsD with visualization tools to create comprehensive dashboards that reflect the status and health of services across an architecture. For instance, combining data from multiple services logged through StatsD can transform raw metrics into actionable insights, showcasing system performance trends over time. This capability empowers stakeholders to maintain oversight and drive decisions based on visualized data sets, enhancing overall operational transparency.</p> </li> </ol>
Loki
<ol> <li> <p><strong>Centralized Logging for Microservices</strong>: Utilize the Loki plugin to gather logs from multiple microservices running in a Kubernetes cluster. By directing logs to a centralized Loki instance, developers can monitor, search, and analyze logs from all services in one place, facilitating easier troubleshooting and performance monitoring. This setup streamlines operations and supports rapid response to issues across distributed applications.</p> </li> <li> <p><strong>Real-Time Log Anomaly Detection</strong>: Combine Loki with monitoring tools to analyze log outputs in real-time for unusual patterns that could indicate system errors or security threats. Implementing anomaly detection on log streams enables teams to proactively identify and respond to incidents, thereby improving system reliability and enhancing security postures.</p> </li> <li> <p><strong>Enhanced Log Processing with Gzip Compression</strong>: Configure the Loki plugin to utilize gzip compression for log transmission. This approach can reduce bandwidth usage and improve transmission speeds, especially beneficial in environments where network bandwidth may be a constraint. It’s particularly useful for high-volume logging applications where every byte counts and performance is critical.</p> </li> <li> <p><strong>Multi-Tenancy Support with Custom Headers</strong>: Leverage the ability to add custom HTTP headers to segregate logs from different tenants in a multi-tenant application environment. By using the Loki plugin to send different headers for each tenant, operators can ensure proper log management and compliance with data isolation requirements, making it a versatile solution for SaaS applications.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration