StatsD and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The StatsD input plugin captures metrics from a StatsD server by running a listener service in the background, allowing for comprehensive performance monitoring and metric aggregation.</p>
<p>The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.</p>
Integration details
StatsD
<p>The StatsD input plugin is designed to gather metrics from a StatsD server by running a backgrounded StatsD listener service while Telegraf is active. This plugin leverages the format of the StatsD messages as established by the original Etsy implementation, which allows for various types of metrics including gauges, counters, sets, timings, histograms, and distributions. The capabilities of the StatsD plugin extend to parsing tags and extending the standard protocol with features that accommodate InfluxDB’s tagging system. It can handle messages sent via different protocols (UDP or TCP), manage multiple metric metrics effectively, and offers advanced configurations for optimal metric handling such as percentiles calculation and data transformation templates. This flexibility empowers users to track application performance comprehensively, making it an essential tool for robust monitoring setups.</p>
MongoDB
<p>This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.</p>
Configuration
StatsD
MongoDB
Input and output integration examples
StatsD
<ol> <li> <p><strong>Real-time Application Performance Monitoring</strong>: Utilize the StatsD input plugin to monitor application performance metrics in real-time. By configuring your application to send various metrics to a StatsD server, teams can leverage this plugin to analyze performance bottlenecks, track user activity, and ensure resource optimization dynamically. The combination of historical and real-time metrics allows for proactive troubleshooting and enhances the responsiveness of issue resolution processes.</p> </li> <li> <p><strong>Tracking User Engagement Metrics in Web Applications</strong>: Use the StatsD plugin to gather user engagement statistics, such as page views, click events, and interaction times. By sending these metrics to the StatsD server, businesses can derive valuable insights into user behavior, enabling them to make data-driven decisions to improve user experience and interface design based on quantitative feedback. This can significantly enhance the effectiveness of marketing strategies and product development efforts.</p> </li> <li> <p><strong>Infrastructure Health Monitoring</strong>: Deploy the StatsD plugin to monitor the health of your server infrastructure by tracking metrics such as resource utilization, server response times, and network performance. With this setup, DevOps teams can gain detailed visibility into system performance, effectively anticipating issues before they escalate. This enables a proactive approach to infrastructure management, minimizing downtimes and ensuring optimal service delivery.</p> </li> <li> <p><strong>Creating Comprehensive Service Dashboards</strong>: Integrate StatsD with visualization tools to create comprehensive dashboards that reflect the status and health of services across an architecture. For instance, combining data from multiple services logged through StatsD can transform raw metrics into actionable insights, showcasing system performance trends over time. This capability empowers stakeholders to maintain oversight and drive decisions based on visualized data sets, enhancing overall operational transparency.</p> </li> </ol>
MongoDB
<ol> <li> <p><strong>Dynamic Logging to MongoDB for IoT Devices</strong>: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.</p> </li> <li> <p><strong>Time Series Analysis of Web Traffic</strong>: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.</p> </li> <li> <p><strong>Automated Monitoring and Alerting System</strong>: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.</p> </li> <li> <p><strong>Data Retention and TTL Management in Metrics Storage</strong>: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration