Suricata and PostgreSQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>This plugin reports internal performance counters of the Suricata IDS/IPS engine and processes the incoming data to fit Telegraf’s format.</p>
<p>The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.</p>
Integration details
Suricata
<p>The Suricata plugin captures and reports internal performance metrics from the Suricata IDS/IPS engine, which includes a wide range of statistics such as traffic volume, memory usage, uptime, and counters for flows and alerts. This plugin listens for JSON-formatted log outputs from Suricata, allowing it to parse and format the data for integration with Telegraf. It operates as a service input plugin, meaning it actively waits for metrics or events from Suricata rather than collecting metrics at predefined intervals. The plugin supports configurations for different metrics versions allowing for enhanced flexibility and detailed data gathering.</p>
PostgreSQL
<p>The PostgreSQL plugin enables users to write metrics to a PostgreSQL database or a compatible database, providing robust support for schema management by automatically updating missing columns. The plugin is designed to facilitate integration with monitoring solutions, allowing users to efficiently store and manage time series data. It offers configurable options for connection settings, concurrency, and error handling, and supports advanced features such as JSONB storage for tags and fields, foreign key tagging, templated schema modifications, and support for unsigned integer data types through the pguint extension.</p>
Configuration
Suricata
PostgreSQL
Input and output integration examples
Suricata
<ol> <li> <p><strong>Network Traffic Analysis</strong>: Utilize the Suricata plugin to track detailed metrics about network intrusion attempts and performance, aiding in real-time threat detection and response. By visualizing captured alerts and flow statistics, security teams can quickly pinpoint vulnerabilities and mitigate risks.</p> </li> <li> <p><strong>Performance Monitoring Dashboard</strong>: Create a dashboard using the Suricata Telegraf plugin metrics to monitor the health and performance of the IDS/IPS engine. This use case provides an overview of memory usage, captured packets, and alert statistics, allowing teams to maintain optimal operating conditions.</p> </li> <li> <p><strong>Automated Security Reporting</strong>: Leverage the plugin to generate regular reports on alert statistics and traffic patterns, helping security analysts to identify long-term trends and prepare strategic defense initiatives. Automated reports also ensure that the security posture of the network is continually assessed.</p> </li> <li> <p><strong>Real-time Alert Handling</strong>: Integrate Suricata’s alert metrics within a broader incident response automation framework. By incorporating the inputs from the Suricata plugin, organizations can develop smart triggers for alerting and automated response workflows that enhance reaction times to potential threats.</p> </li> </ol>
PostgreSQL
<ol> <li> <p><strong>Real-Time Analytics with Complex Queries</strong>: Leverage the PostgreSQL plugin to store metrics from various sources in a PostgreSQL database, enabling real-time analytics using complex queries. This setup can help data scientists and analysts uncover patterns and trends, as they manipulate relational data across multiple tables while utilizing PostgreSQL’s robust query optimization features. Specifically, users can create sophisticated reports with JOIN operations across different metric tables, revealing insights that would typically remain hidden in embedded systems.</p> </li> <li> <p><strong>Integrating with TimescaleDB for Time-Series Data</strong>: Utilize the PostgreSQL plugin within a TimescaleDB instance to efficiently handle and analyze time-series data. By implementing hypertables, users can achieve greater performance and partitioning of topics over the time dimension. This integration allows users to run analytical queries over large amounts of time-series data while retaining the full power of PostgreSQL’s SQL queries, ensuring reliability and efficiency in metrics analysis.</p> </li> <li> <p><strong>Data Versioning and Historical Analysis</strong>: Implement a strategy using the PostgreSQL plugin to maintain different versions of metrics over time. Users can set up an immutable data table structure where older versions of tables are retained, enabling easy historical analysis. This approach not only provides insights into data evolution but also aids compliance with data retention policies, ensuring that the historical integrity of the datasets remains intact.</p> </li> <li> <p><strong>Dynamic Schema Management for Evolving Metrics</strong>: Use the plugin’s templating capabilities to create a dynamically changing schema that responds to metric variations. This use case allows organizations to adapt their data structure as metrics evolve, adding necessary fields and ensuring adherence to data integrity policies. By leveraging templated SQL commands, users can extend their database without manual intervention, facilitating agile data management practices.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration