Tail and Clickhouse Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Tail Telegraf plugin collects metrics by tailing specified log files, capturing new log entries in real-time for further analysis.</p>
<p>Telegraf’s SQL plugin sends collected metrics to an SQL database using a straightforward table schema and dynamic column generation. When configured for ClickHouse, it adjusts DSN formatting and type conversion settings to ensure seamless data integration.</p>
Integration details
Tail
<p>The tail plugin is designed to continuously monitor and parse log files, making it ideal for real-time log analysis and monitoring. It mimics the functionality of the Unix <code>tail</code> command, allowing users to specify a file or pattern and begin reading new lines as they are added. Key features include the ability to follow log-rotated files, start reading from the end of a file, and support various parsing formats for the log messages. Users can customize the plugin through various configuration options, such as specifying file encoding, the method for watching file updates, and filter settings for processing log data. This plugin is particularly valuable in environments where log data is critical for monitoring application performance and diagnosing issues.</p>
Clickhouse
<p>Telegraf’s SQL plugin is engineered to write metric data into an SQL database by dynamically creating tables and columns based on incoming metrics. When configured for ClickHouse, it utilizes the clickhouse-go v1.5.4 driver, which employs a unique DSN format and a set of specialized type conversion rules to map Telegraf’s data types directly to ClickHouse’s native types. This approach ensures optimal storage and retrieval performance in high-throughput environments, making it well-suited for real-time analytics and large-scale data warehousing. The dynamic schema creation and precise type mapping enable detailed time-series data logging, crucial for monitoring modern, distributed systems.</p>
Configuration
Tail
Clickhouse
Input and output integration examples
Tail
<ol> <li> <p><strong>Real-Time Server Health Monitoring</strong>: Implement the Tail plugin to parse web server access logs in real-time, providing immediate visibility into user activity, error rates, and performance metrics. By visualizing this log data, operations teams can quickly identify and respond to spikes in traffic or errors, enhancing system reliability and user experience.</p> </li> <li> <p><strong>Centralized Log Management</strong>: Utilize the Tail plugin to aggregate logs from multiple sources across a distributed system. By configuring each service to send its logs to a centralized location via the Tail plugin, teams can simplify log analysis and ensure that all relevant data is accessible from a single interface, streamlining troubleshooting processes.</p> </li> <li> <p><strong>Security Incident Detection</strong>: Use this plugin to monitor authentication logs for unauthorized access attempts or suspicious activity. By setting up alerts on certain log messages, teams can leverage this plugin to enhance security postures and respond promptly to potential security threats, reducing the risk of breaches and increasing overall system integrity.</p> </li> <li> <p><strong>Dynamic Application Performance Insights</strong>: Integrate with analytics tools to create real-time dashboards that display application performance metrics based on log data. This setup not only helps developers diagnose bottlenecks and inefficiencies but also allows for proactive performance tuning and resource allocation, optimizing application behavior under varying loads.</p> </li> </ol>
Clickhouse
<ol> <li> <p><strong>Real-Time Analytics for High-Volume Data</strong>: Use the plugin to feed streaming metrics from large-scale systems into ClickHouse. This setup supports ultra-fast query performance and near real-time analytics, ideal for monitoring high-traffic applications.</p> </li> <li> <p><strong>Time-Series Data Warehousing</strong>: Integrate the plugin with ClickHouse to create a robust time-series data warehouse. This use case allows organizations to store detailed historical metrics and perform complex queries for trend analysis and capacity planning.</p> </li> <li> <p><strong>Scalable Monitoring in Distributed Environments</strong>: Leverage the plugin to dynamically create tables per metric type in ClickHouse, making it easier to manage and query data from a multitude of distributed systems without prior schema definitions.</p> </li> <li> <p><strong>Optimized Storage for IoT Deployments</strong>: Deploy the plugin to ingest data from IoT sensors into ClickHouse. Its efficient schema creation and native type mapping facilitate the handling of massive volumes of data, enabling real-time monitoring and predictive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration