Tail and Databricks Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Tail Telegraf plugin collects metrics by tailing specified log files, capturing new log entries in real-time for further analysis.</p>
<p>Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.</p>
Integration details
Tail
<p>The tail plugin is designed to continuously monitor and parse log files, making it ideal for real-time log analysis and monitoring. It mimics the functionality of the Unix <code>tail</code> command, allowing users to specify a file or pattern and begin reading new lines as they are added. Key features include the ability to follow log-rotated files, start reading from the end of a file, and support various parsing formats for the log messages. Users can customize the plugin through various configuration options, such as specifying file encoding, the method for watching file updates, and filter settings for processing log data. This plugin is particularly valuable in environments where log data is critical for monitoring application performance and diagnosing issues.</p>
Databricks
<p>This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a <code>statement</code> field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a <code>PUT ... INTO /Volumes/...</code> command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the <code>warehouse_id</code> at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and <code>COPY INTO</code> are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.</p>
Configuration
Tail
Databricks
Input and output integration examples
Tail
<ol> <li> <p><strong>Real-Time Server Health Monitoring</strong>: Implement the Tail plugin to parse web server access logs in real-time, providing immediate visibility into user activity, error rates, and performance metrics. By visualizing this log data, operations teams can quickly identify and respond to spikes in traffic or errors, enhancing system reliability and user experience.</p> </li> <li> <p><strong>Centralized Log Management</strong>: Utilize the Tail plugin to aggregate logs from multiple sources across a distributed system. By configuring each service to send its logs to a centralized location via the Tail plugin, teams can simplify log analysis and ensure that all relevant data is accessible from a single interface, streamlining troubleshooting processes.</p> </li> <li> <p><strong>Security Incident Detection</strong>: Use this plugin to monitor authentication logs for unauthorized access attempts or suspicious activity. By setting up alerts on certain log messages, teams can leverage this plugin to enhance security postures and respond promptly to potential security threats, reducing the risk of breaches and increasing overall system integrity.</p> </li> <li> <p><strong>Dynamic Application Performance Insights</strong>: Integrate with analytics tools to create real-time dashboards that display application performance metrics based on log data. This setup not only helps developers diagnose bottlenecks and inefficiencies but also allows for proactive performance tuning and resource allocation, optimizing application behavior under varying loads.</p> </li> </ol>
Databricks
<ol> <li><strong>Edge-to-Lakehouse Telemetry Pipe</strong>: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.</li> <li><strong>Blue-Green CI/CD Rollout Metrics</strong>: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by <code>deployment_id</code>, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions.</li> <li><strong>SaaS Usage Metering</strong>: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.</li> <li><strong>Security Forensics Lake</strong>: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using <code>PUT</code> commands, then run <code>COPY INTO</code> for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.</li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration