Zipkin and MariaDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.</p>
<p>This plugin writes metrics from Telegraf directly into MariaDB using parameterized SQL INSERT statements, offering a flexible way to store metrics in structured, relational tables.</p>
Integration details
Zipkin
<p>This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.</p>
MariaDB
<p>The SQL output plugin in Telegraf enables direct writing of metrics into SQL-compatible databases like MariaDB by executing parameterized SQL statements. With support for the MySQL driver, the plugin seamlessly integrates with MariaDB for reliable, structured metric storage. This setup is ideal for users who prefer SQL-based analytics or want to store metrics alongside business data for unified querying. MariaDB is a community-developed, enterprise-grade fork of MySQL that emphasizes performance, security, and openness. The plugin supports inserting time series metrics into custom schemas, enabling flexible analytics and integrations with BI tools like Metabase or Grafana using SQL connectors.</p>
Configuration
Zipkin
MariaDB
Input and output integration examples
Zipkin
<ol> <li> <p><strong>Latency Monitoring in Microservices</strong>: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.</p> </li> <li> <p><strong>Performance Optimization in Essential Services</strong>: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.</p> </li> <li> <p><strong>Dynamic Service Dependency Mapping</strong>: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.</p> </li> <li> <p><strong>Anomaly Detection in Service Latency</strong>: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.</p> </li> </ol>
MariaDB
<ol> <li> <p><strong>Business Intelligence Integration</strong>: Store application performance metrics directly into MariaDB and connect it to BI tools like Metabase or Apache Superset. This setup allows blending of operational data with business KPIs for unified dashboards, enhancing visibility across departments.</p> </li> <li> <p><strong>Compliance Reporting with Historical Metrics</strong>: Use this plugin to log metrics into MariaDB for audit and compliance use cases. The relational model enables precise querying of past performance indicators with timestamped entries, supporting regulatory documentation.</p> </li> <li> <p><strong>Custom Alerting Based on SQL Logic</strong>: Insert metrics into MariaDB and use custom SQL queries to define alert thresholds or conditions. Combined with cron jobs or scheduled scripts, this enables advanced alerting workflows not possible with traditional metric platforms.</p> </li> <li> <p><strong>IoT Sensor Metrics Storage</strong>: Collect sensor data from IoT devices via Telegraf and store it in MariaDB using a normalized schema. This approach is cost-effective and integrates well with existing SQL-based systems for real-time or historical analysis.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration