Zipkin and TimescaleDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
<p>The Zipkin Input Plugin allows for the collection of tracing information and timing data from microservices. This capability is essential for diagnosing latency troubles within complex service-oriented environments.</p>
<p>This output plugin delivers a reliable and efficient mechanism for routing Telegraf collected metrics directly into TimescaleDB. By leveraging PostgreSQL’s robust ecosystem combined with TimescaleDB’s time series optimizations, it supports high-performance data ingestion and advanced querying capabilities.</p>
Integration details
Zipkin
<p>This plugin implements the Zipkin HTTP server to gather trace and timing data necessary for troubleshooting latency issues in microservice architectures. Zipkin is a distributed tracing system that helps gather timing data across various microservices, allowing teams to visualize the flow of requests and identify bottlenecks in performance. The plugin offers support for input traces in JSON or thrift formats based on the specified Content-Type. Additionally, it utilizes span metadata to track the timing of requests, enhancing the observability of applications that adhere to the OpenTracing standard. As an experimental feature, its configuration and schema may evolve over time to better align with user requirements and advancements in distributed tracing methodologies.</p>
TimescaleDB
<p>TimescaleDB is an open source time series database built as an extension to PostgreSQL, designed to handle large scale, time-oriented data efficiently. Launched in 2017, TimescaleDB emerged in response to the growing need for a robust, scalable solution that could manage vast volumes of data with high insert rates and complex queries. By leveraging PostgreSQL’s familiar SQL interface and enhancing it with specialized time series capabilities, TimescaleDB quickly gained popularity among developers looking to integrate time series functionality into existing relational databases. Its hybrid approach allows users to benefit from PostgreSQL’s flexibility, reliability, and ecosystem while providing optimized performance for time series data.</p> <p>The database is particularly effective in environments that demand fast ingestion of data points combined with sophisticated analytical queries over historical periods. TimescaleDB has a number of innovative features like hypertables which transparently partition data into manageable chunks and built-in continuous aggregation. These allow for significantly improved query speed and resource efficiency.</p>
Configuration
Zipkin
TimescaleDB
Input and output integration examples
Zipkin
<ol> <li> <p><strong>Latency Monitoring in Microservices</strong>: Use the Zipkin Input Plugin to capture and analyze tracing data from a microservices architecture. By visualizing the request flow and pinpointing latency sources, development teams can optimize service interactions, improve response times, and ensure a smoother user experience across services.</p> </li> <li> <p><strong>Performance Optimization in Essential Services</strong>: Integrate the plugin within critical services to monitor not only the response times but also track specific annotations that could highlight performance issues. The ability to gather span data can help prioritize areas needing performance enhancements, leading to targeted improvements.</p> </li> <li> <p><strong>Dynamic Service Dependency Mapping</strong>: With the collected trace data, automatically map service dependencies and visualize them in dashboards. This helps teams understand how different services interact and the impact of failures or slowdowns, ultimately leading to better architectural decisions and faster resolutions of issues.</p> </li> <li> <p><strong>Anomaly Detection in Service Latency</strong>: Combine Zipkin data with machine learning models to detect unusual patterns in service latencies and request processing times. By automatically identifying anomalies, operations teams can respond proactively to emerging issues before they escalate into critical failures.</p> </li> </ol>
TimescaleDB
<ol> <li> <p><strong>Real-Time IoT Data Ingestion</strong>: Use the plugin to collect and store sensor data from thousands of IoT devices in real time. This setup facilitates immediate analysis, helping organizations monitor operational efficiency and respond quickly to changing conditions.</p> </li> <li> <p><strong>Cloud Application Performance Monitoring</strong>: Leverage the plugin to feed detailed performance metrics from distributed cloud applications into TimescaleDB. This integration supports real-time dashboards and alerts, enabling teams to swiftly identify and mitigate performance bottlenecks.</p> </li> <li> <p><strong>Historical Data Analysis and Reporting</strong>: Implement a system where long-term metrics are stored in TimescaleDB for comprehensive historical analysis. This approach allows businesses to perform trend analysis, generate detailed reports, and make data-driven decisions based on archived time-series data.</p> </li> <li> <p><strong>Adaptive Alerting and Anomaly Detection</strong>: Integrate the plugin with automated anomaly detection workflows. By continuously streaming metrics to TimescaleDB, machine learning models can analyze data patterns and trigger alerts when anomalies occur, enhancing system reliability and proactive maintenance.</p> </li> </ol>
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration